三维花状层状双金属氢氧化物的制备及其对甲基橙的去除

龚娴, 杨陈凯, 马若男, 章萍. 三维花状层状双金属氢氧化物的制备及其对甲基橙的去除[J]. 环境化学, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404
引用本文: 龚娴, 杨陈凯, 马若男, 章萍. 三维花状层状双金属氢氧化物的制备及其对甲基橙的去除[J]. 环境化学, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404
GONG Xian, YANG Chenkai, MA Ruonan, ZHANG Ping. Synthesis of 3D flower-like hierarchical layered double hydroxide microspheres and removal of methyl orange[J]. Environmental Chemistry, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404
Citation: GONG Xian, YANG Chenkai, MA Ruonan, ZHANG Ping. Synthesis of 3D flower-like hierarchical layered double hydroxide microspheres and removal of methyl orange[J]. Environmental Chemistry, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404

三维花状层状双金属氢氧化物的制备及其对甲基橙的去除

  • 基金项目:

    国家自然科学基金(214167014,21767018),江西省杰出青年人才项目(20171BCB23017)和中国博士后科学基金(2017M612164)资助.

Synthesis of 3D flower-like hierarchical layered double hydroxide microspheres and removal of methyl orange

  • Fund Project: Supported by the National Natural Science Foundation of China (214167014, 21767018), Jiangxi Province Outstanding Young Talents Funding Project (20171BCB23017) and China Post-Doctoral Science Foundation (2017M612164).
  • 摘要: 以阴离子表面活性剂十二烷基硫酸钠(SDS)为模板剂,制备三维花状LDH(3D-LDH).借助X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FT-IR)等表征手段确定最佳合成SDS浓度,并将最佳条件下产物进行热重-差热分析(TG-DTA)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)分析.此外,将3D-LDH作为吸附剂,研究其对50 mg·L-1甲基橙(MO)的去除性能及机制.结果表明,当SDS浓度高于0.05 mol·L-1时,可形成直径约为1.5-2 μm的花状微球.3D-LDH对MO的吸附容量为44.4 mg·g-1,吸附动力学符合准二级动力学方程.结合XPS分析,3D-LDH对MO的去除机制主要为离子交换作用.
  • 加载中
  • [1] 姚时, 张鸣帅, 李林璇,等. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018,37(1):96-107.

    YAO S, ZHANG M S, LI L X, et al. Preparation of tea waste-nano Fe3O4 composite and its removalmechanism of methylene blue from aqueous solution[J]. Environmental Chemistry, 2018, 37(1):96-107(in Chinese).

    [2] BRILLAS E, MARTíNEZ-HUITLE, CARLOS A, et al. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods[J]. An Updated Review. Applied Catalysis B:Environmental, 2015, 166-167:603-643.
    [3] NGUYEN T A, FU C C, JUANG R S, Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans[J]. J Environ Manage, 2016, 182:265-271.
    [4] BANDALA E R, PELáEZ MIGUEL A, GARCíA-LóPEZ A J, et al. Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes[J]. Chemical Engineering and Processing:Process Intensification, 2008, 47(2):169-176.
    [5] NAINAMALAI M, PALANI M, SOUNDARAJAN B, et al. Decolorization of synthetic dye wastewater using packed bed electro-adsorption column[J]. Chemical Engineering and Processing-Process Intensification, 2018, 130:160-168.
    [6] ARAVIND PRIYADHARSHINI, SELVARAJ H, FERRO S, et al. A one-pot approach:Oxychloride radicals enhanced electrochemical oxidation for the treatment of textile dye wastewater trailed by mixed salts recycling[J]. Journal of Cleaner Production, 2018, 182:246-258.
    [7] ZHAO C, ZHENG H, SUN Y, et al. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater:Effect of kaolin particles[J]. Sci Total Environ, 2018, 640-641:243-254.
    [8] AHMAD R, ASLAM M, PARK E, ET AL. Submerged low-cost pyrophyllite ceramic membrane filtration combined with GAC as fluidized particles for industrial wastewater treatment[J]. Chemosphere, 2018, 206:784-792.
    [9] MA H, PU S Y, HOU Y G, et al. A highly efficient magnetic chitosan "fluid" adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification[J]. Chemical Engineering Journal, 2018, 345:556-565.
    [10] HUANG Z, LI Y Z, CHEN W J, et al. Modified bentonite adsorption of organic pollutants of dye wastewater[J]. Materials Chemistry and Physics, 2017, 202:266-276.
    [11] ZHENG W W, SUN S G, XU Y Q, et al. Facile synthesis of NiAl-LDH/MnO2 and NiFe-LDH/MnO2 composites for high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2018, 768:240-248.
    [12] ZHOU H L, SONG Y X, LIU Y C, et al. Fabrication of CdS/Ni Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution[J]. International Journal of Hydrogen Energy, 2018, 43(31):14328-14336.
    [13] LU H T, ZHU Z L, ZHANG H, et al. Fenton like catalysis and oxidation/adsorption performances of acetaminophen and arsenic pollutants in water on a multi-metal Cu-Zn-Fe-LDH[J]. Acs Applied Materials & Interfaces, 2016, 8(38):25343-25352.
    [14] ZHOU J Z, XU Z P, QIAO S Z, et al. Triphosphate removal processes over ternary CaMgAl-layered double hydroxides[J]. Applied Clay Science, 2011, 54(3):196-201.
    [15] IBRAHIM, K.B., SU E N, TSAI M C, et al. Robust and conductive magnéli phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst[J]. Nano Energy, 2018, 47:309-315.
    [16] LEE I, JEONG G H, AN S, et al. Facile synthesis of 3D MnNi-layered double hydroxides (LDH)/graphene composites from directly graphites for pseudocapacitor and their electrochemical analysis[J]. Applied Surface Science, 2018, 429:196-202.
    [17] MENG F Q, MA W, HAO H X, et al. Selective and efficient adsorption of boron (Ⅲ) from water by 3D porous CQDs/LDHs with oxygen-rich functional groups[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83:192-203.
    [18] YU X Y, LUO T, JIA Y, et al. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides:Highly efficient adsorbents for As(Ⅴ) and Cr(Ⅵ) removal[J]. Nanoscale, 2012, 4(11):3466-3474.
    [19] BO L F, LI Q R, WANG Y H, et al. Adsorptive removal of fluoride using hierarchical flower-like calcined Mg-Al layered double hydroxides[J]. Environmental Progress & Sustainable Energy, 2016, 35(5):1420-1429.
    [20] HASSANI K E, BEAKOU B H, KALNINA D, et al. Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange:A comparative study[J]. Applied Clay Science, 2017, 140:124-131.
    [21] ZHANG P, WANG T Q, QIAN G R, et al. Effective intercalation of sodium dodecylsulfate (SDS) into hydrocalumite:Mechanism discussion via near-infrared and mid-infrared investigations[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2015, 149:166-172.
    [22] TAO X M, LIU D L, CONG W W, et al. Controllable synthesis of starch-modified ZnMgAl-LDHs for adsorption property improvement[J]. Applied Surface Science, 2018, 457:572-579.
    [23] HAN J, ZENG H Y, XU S, et al. Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange[J]. Applied Catalysis A:General, 2016, 527:72-80.
    [24] ZANG W L, GAO M L, SHEN T, et al. Facile modification of homoionic-vermiculites by a gemini surfactant:Comparative adsorption exemplified by methyl orange[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 533:99-108.
    [25] SAMAELE N, AMORNPITOKSUK P, SUWANBOON S, Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method[J]. Powder Technology, 2010, 203(2):243-247.
    [26] BLANCHRAGA N, PALOMARES A E, MARTíNEZTRIGUERO J, et al. Cu mixed oxides based on hydrotalcite-like compounds for the oxidation of trichloroethylene[J]. Industrial & Engineering Chemistry Research, 2013, 52(45):15772-15779.
    [27] RUAN X X, HUANG S, CHEN HUA, et al. Sorption of aqueous organic contaminants onto dodecyl sulfate intercalated magnesium iron layered double hydroxide[J]. Applied Clay Science, 2013, 72:96-103.
    [28] SUN M Z, ZHANG P, WU D S, et al. Novel approach to fabricate organo-LDH hybrid by the intercalation of sodium hexadecyl sulfate into tricalcium aluminate[J]. Applied Clay Science, 2017, 140:25-30.
    [29] ZHANG X Q, YANG C H, ZHANG Y P, et al. Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane[J]. International Journal of Hydrogen Energy, 2015, 40(46):16115-16126.
    [30] CHEN Y, LU J, WANG Y, et al. Social distance influences the outcome evaluation of cooperation and conflict:Evidence from event-related potentials[J]. Neurosci Lett, 2017, 647:78-84.
    [31] LIU X, ZHAO X F, ZHU Y, et al. Experimental and theoretical investigation into the elimination of organic pollutants from solution by layered double hydroxides[J]. Applied Catalysis B:Environmental, 2013, 140-141:241-248.
    [32] CHEN D, LI Y, ZHANG J, et al. Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater[J]. Journal of Hazardous Materials, 2012, 243(12):152-160.
    [33] FAN S S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar:Adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1):601-611.
    [34] LING F, LIANG F, YI L, et al. A novel CoFe layered double hydroxides adsorbent:High adsorption amount for methyl orange dye and fast removal of Cr(Ⅵ)[J]. Microporous & Mesoporous Materials, 2016, 234:230-238.
    [35] KANG D J, YU X L, TONG S R, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 228:731-740.
    [36] ZHANG P, QIAN G R, SHI H S, et al. Mechanism of interaction of hydrocalumites (Ca/Al-LDH) with methyl orange and acidic scarlet GR[J]. Journal of Colloid and Interface Science, 2012, 365(1):110-116.
    [37] LAFI R, HAFIANE A, Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs)[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58:424-433.
    [38] 梁丽珠, 王诗生, 盛广宏, 凹凸棒石/CoFe2O4磁性复合材料对Cr(Ⅵ)的吸附性能[J]. 环境工程学报, 2016, 10(10):5586-5592.

    LIANG L Z, WANG S S, SHENG G H, Adsorption capability of Cr(VI) on attapulgite/CoFe2O4 composite materials[J]. Chinese Journal of Environmental Engineering, 2016, 10(10):5586-5592(in Chinese).

  • 加载中
计量
  • 文章访问数:  1392
  • HTML全文浏览数:  1391
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-08-04
  • 刊出日期:  2019-06-15
龚娴, 杨陈凯, 马若男, 章萍. 三维花状层状双金属氢氧化物的制备及其对甲基橙的去除[J]. 环境化学, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404
引用本文: 龚娴, 杨陈凯, 马若男, 章萍. 三维花状层状双金属氢氧化物的制备及其对甲基橙的去除[J]. 环境化学, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404
GONG Xian, YANG Chenkai, MA Ruonan, ZHANG Ping. Synthesis of 3D flower-like hierarchical layered double hydroxide microspheres and removal of methyl orange[J]. Environmental Chemistry, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404
Citation: GONG Xian, YANG Chenkai, MA Ruonan, ZHANG Ping. Synthesis of 3D flower-like hierarchical layered double hydroxide microspheres and removal of methyl orange[J]. Environmental Chemistry, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404

三维花状层状双金属氢氧化物的制备及其对甲基橙的去除

  • 1.  南昌大学资源环境与化工学院鄱阳湖环境与资源利用教育部重点实验室, 南昌, 330031;
  • 2.  江西省南昌市环境监测站, 南昌, 330038
基金项目:

国家自然科学基金(214167014,21767018),江西省杰出青年人才项目(20171BCB23017)和中国博士后科学基金(2017M612164)资助.

摘要: 以阴离子表面活性剂十二烷基硫酸钠(SDS)为模板剂,制备三维花状LDH(3D-LDH).借助X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FT-IR)等表征手段确定最佳合成SDS浓度,并将最佳条件下产物进行热重-差热分析(TG-DTA)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)分析.此外,将3D-LDH作为吸附剂,研究其对50 mg·L-1甲基橙(MO)的去除性能及机制.结果表明,当SDS浓度高于0.05 mol·L-1时,可形成直径约为1.5-2 μm的花状微球.3D-LDH对MO的吸附容量为44.4 mg·g-1,吸附动力学符合准二级动力学方程.结合XPS分析,3D-LDH对MO的去除机制主要为离子交换作用.

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回