BRAUER M, ROTH G A, ARAVKIN A Y, et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021:a systematic analysis for the Global Burden of Disease Study 2021[J]. The lancet, 2024, 403(10440):2162-2203.
KONG X M, BENNETT W C, JANIA C M, et al. Identification of an ATP/P2X7/mast cell pathway mediating ozone-induced bronchial hyperresponsiveness[J]. Journal of clinical investigation insight, 2021, 6(21):e140207.
LEPEULE J, LADEN F, DOCKERY D, et al. Chronic exposure to fine particles and mortality:an extended follow-up of the Harvard Six Cities study from 1974 to 2009[J]. Environmental health perspectives, 2012, 120(7):965-970.
ZHENG S, POZZER A, CAO C X, et al. Long-term (2001-2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China[J]. Atmospheric chemistry and physics, 2015, 15(10):5715-5725.
YANG L Y, LI C, TANG X X. The impact of PM2.5 on the host defense of respiratory system[J]. Frontiers in cell and developmental biology, 2020, 8:91.
LEDERER A M, FREDRIKSEN P M, NKEH-CHUNGAG B N, et al. Cardiovascular effects of air pollution:current evidence from animal and human studies[J]. American journal of physiology heart and circulatory physiology, 2021, 320(4):H1417-H1439.
NGUYEN U T N, HSIEH H Y, CHIN T Y, et al. Evaluation of PM2.5 influence on human lung cancer cells using a microfluidic platform[J]. International journal of medical sciences, 2024, 21(6):1117-1128.
ARDEN POPE C 3rd, BHATNAGAR A, MCCRACKEN J P, et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation[J]. Circulation research, 2016, 119(11):1204-1214.
ZHANG J J, WEI Y J, FANG Z F. Ozone pollution:a major health hazard worldwide[J]. Frontiers in immunology, 2019, 10:2518.
贺晓楠,张城,曹璇,等. PM2.5与心血管疾病住院患者血清TNF-α表达的相关性研究[J].中国实验诊断学, 2018, 22(3):389-392. HE X N, ZHANG C, CAO X, et al. The research on the correlation between PM2.5 and TNF-α of inpatients with cardiovascular disease[J]. Chinese journal of laboratory diagnosis, 2018, 22(3):389-392.
DENIERE E, VAN HULLE S, VAN LANGENHOVE H, et al. Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process:the role of different oxidative species[J]. Journal of hazardous materials, 2018, 360:204-213.
ZHOU Y Q, DUAN W L, CHEN Y N, et al. Exposure risk of global surface O3 during the boreal spring season[J]. Exposure and health, 2022, 14(2):431-446.
ARJOMANDI M, WONG H, TENNEY R, et al. Effect of ozone on allergic airway inflammation[J]. Journal of allergy and clinical immunology:global, 2022, 1(4):273-281.
JIANG Y X, HUANG J, LI G X, et al. Ozone pollution and hospital admissions for cardiovascular events[J]. European heart journal, 2023, 44(18):1622-1632.
LIU C, CHEN R J, SERA F, et al. Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities:two stage time series analysis[J]. BMJ, 2023, 383:e075203.
NERY-FLORES S D, RAMÍREZ-HERRERA M A, MENDOZA-MAGAÑA M L, et al. Dietary curcumin prevented astrocytosis, microgliosis, and apoptosis caused by acute and chronic exposure to ozone[J]. Molecules, 2019, 24(15):2839.
YANG L W, WANG Y H, LIN Z Y, et al. Mitochondrial OGG1 protects against PM2.5-induced oxidative DNA damage in BEAS-2B cells[J]. Experimental and molecular pathology, 2015, 99(2):365-373.
AVOGBE P H, AYI-FANOU L, AUTRUP H, et al. Ultrafine particulate matter and high-level benzene urban air pollution in relation to oxidative DNA damage[J]. Carcinogenesis, 2005, 26(3):613-620.
黄强,董发勤,王利民,等. PM2.5的细胞毒性及机制研究进展[J].毒理学杂志, 2014, 28(1):68-72.
KOSMIDER B, LOADER J E, MURPHY R C, et al. Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells[J]. Free radical biology and medicine, 2010, 48(11):1513-1524.
WU X X, ZHANG H Y, QI W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell death&disease, 2018, 9(2):171.
HERRERA A S, DEL C A E M, ASHRAF G M, et al. Beyond mitochondria, what would be the energy source of the cell?[J]. Central nervous system agents in medicinal chemistry, 2015, 15(1):32-41.
DARE A J, PHILLIPS A R J, HICKEY A J R, et al. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome[J]. Free radical biology&medicine, 2009, 47(11):1517-1525.
XIAN H X, WATARI K, SANCHEZ-LOPEZ E, et al. Oxidized DNA fragments exit mitochondria via mPTP-and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling[J]. Immunity, 2022, 55(8):1370-1385.
AKEN O V J A R. Mitochondria and cell death[J]. Nature, 2017, 36(9):4980-4993.
毕婷婷,陈世杰,赵晓红,等. PM2.5对线粒体损伤作用机制的研究进展[J].生命科学, 2016, 28(3):409-414. BI T T, CHEN S J, ZHAO X H, et al. Advances on mechanism of mitochondrial damage induced by PM2.5[J]. Chinese bulletin of life sciences, 2016, 28(3):409-414.
GAO R, KU T T, JI X T, et al. Abnormal energy metabolism and tau phosphorylation in the brains of middle-aged mice in response to atmospheric PM2.5 exposure[J]. Journal of environmental sciences, 2017, 62:145-153.
SILBAJORIS R, OSORNIO-VARGAS A R, SIMMONS S O, et al. Ambient particulate matter induces interleukin-8 expression through an alternative NF-κ B (nuclear factor-kappa B) mechanism in human airway epithelial cells[J]. Environmental health perspectives, 2011, 119(10):1379-1383.
LI R J, KOU X J, GENG H, et al. Mitochondrial damage:an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats[J]. Journal of hazardous materials, 2015, 287:392-401.
AMORES-INIESTA J, BARBER-CREMADES M, MAR-TíNEZ C M, et al. Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection[J]. Cell reports, 2017, 21(12):3414-3426.
ZHANG N, LI P, LIN H, et al. IL-10 ameliorates PM2.5-induced lung injury by activating the AMPK/SIRT1/PGC-1α pathway[J]. Environmental toxicology and pharmacology, 2021, 86:103659.
LALIER L, MIGNARD V, JOALLAND M P, et al. TOM20-mediated transfer of Bcl2 from ER to MAM and mitochondria upon induction of apoptosis[J]. Cell death&disease, 2021, 12(2):182.
LI J Y, SUN X, WANG X, et al. PGAM5 exacerbates acute renal injury by initiating mitochondria-dependent apoptosis by facilitating mitochondrial cytochrome c release[J]. Acta pharmacologica sinica, 2024, 45(1):125-136.
TORRES-RAMOS Y D. Urban PM2.5 induces ROS generation and RBC damage in COPD patients[J]. Frontiers in bioscience, 2011, E3(1):808.
LI R S, MITTELSTEIN D, KAM W, et al. Atmospheric ultrafine particles promote vascular calcification via the NF-κ B signaling pathway[J]. American journal of physiology cell physiology, 2013, 304(4):C362-C369.
SHAN H, LI X H, OUYANG C, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function[J]. Ecotoxicology and environmental safety, 2022, 231:113170.
WIEGMAN C H, MICHAELOUDES C, HAJI G, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease[J]. Journal of allergy and clinical immunology, 2015, 136(3):769-780.
JI X T, LI C X, ZHU X Z, et al. Methylcobalamin alleviates neuronal apoptosis and cognitive decline induced by PM2.5 exposure in mice[J]. Journal of Alzheimer's disease, 2022, 86(4):1783-1796.
LI X L, RAN Q, HE X, et al. HO-1 upregulation promotes mitophagy-dependent ferroptosis in PM2.5-exposed hippocampal neurons[J]. Ecotoxicology and environmental safety, 2024, 277:116314.
GUO C C, LYU Y, XIA S S, et al. Organic extracts in PM2.5 are the major triggers to induce ferroptosis in SH-SY5Y cells[J]. Ecotoxicology and environmental safety, 2023, 249:114350.
BATTAGLIA A M, CHIRILLO R, AVERSA I, et al. Ferroptosis and cancer:mitochondria meet the"iron maiden"cell death[J]. Cells, 2020, 9(6):1505.
TIAN L, CHU N, YANG H, et al. Acute ozone exposure can cause cardiotoxicity:mitochondria play an important role in mediating myocardial apoptosis[J]. Chemosphere, 2021, 268:128838.
XU M M, WANG L, WANG M Y, et al. Mitochondrial ROS and NLRP3 inflammasome in acute ozone-induced murine model of airway inflammation and bronchial hyperresponsiveness[J]. Free radical research, 2019, 53(7):780-790.
VALDEZ M, VALDEZ J M, FREEBORN D, et al. The effects of ozone exposure and sedentary lifestyle on neuronal microglia and mitochondrial bioenergetics of female Long-Evans rats[J]. Toxicology and applied pharmacology, 2020, 408:115254.
TU H L, COSTA M. XIAP's profile in human cancer[J]. Biomolecules, 2020, 10(11):1493.
MILLER D B, KAROLY E D, JONES J C, et al. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats[J]. Toxicology and applied pharmacology, 2015, 286(2):65-79.
NING R H, LI Y, DU Z, et al. The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy[J]. Redox biology, 2021, 46:102113.
JIN X T, SU R J, LI R J, et al. Amelioration of particulate matter-induced oxidative damage by vitamin c and quercetin in human bronchial epithelial cells[J]. Chemosphere, 2016, 144:459-466.
WU S W, LI X, MENG S S, et al. Fruit and vegetable consumption, cigarette smoke, and leukocyte mitochondrial DNA copy number[J]. The American journal of clinical nutrition, 2019, 109(2):424-432.
ZHOU L X, LI L P, HAO G M, et al. Sperm mtDNA copy number, telomere length, and seminal spermatogenic cells in relation to ambient air pollution:results of a cross-sectional study in Jing-Jin-Ji Region of China[J]. Journal of hazardous materials, 2021, 406:124308.
CHUANG K J, CHAN C C, SU T C, et al. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults[J]. American journal of respiratory and critical care medicine, 2007, 176(4):370-376.
CHUANG G C, YANG Z, WESTBROOK D G, et al. Pulmonary ozone exposure induces vascular dysfunction, mitochondrial damage, and atherogenesis[J]. American journal of physiology lung cellular and molecular physiology, 2009, 297(2):L209-L216.
LI R Y, CHEN G B, LIU X T, et al. Aging biomarkers:potential mediators of association between long-term ozone exposure and risk of atherosclerosis[J]. Journal of internal medicine, 2022, 292(3):512-522.
SILVA RAMOS E, LARSSON N G, MOURIER A. Bioenergetic roles of mitochondrial fusion[J]. Biochimica et biophysica acta (BBA)-bioenergetics, 2016, 1857(8):1277-1283.
LI R J, KOU X J, GENG H, et al. Effect of ambient PM2.5 on lung mitochondrial damage and fusion/fission gene expression in rats[J]. Chemical research in toxicology, 2015, 28(3):408-418.
THOMAS CRIBBS J, STRACK S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death[J]. EMBO reports, 2007, 8(10):939-944.
ROUSCHOP S H, SNOW S J, KODAVANTI U P, et al. Perinatal high-fat diet influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring[J]. International journal of molecular sciences, 2021, 22(14):7551.
GÓMEZ-CRISÓSTOMO N P, RIVAS-ARANCIBIA S, RODRÍGUEZ-MARTÍNEZ E, et al. Chronic exposure to ozone induces cardiac antioxidant response and overexpression of either mitochondrial fision protein DRP1 and hipertrophyc-related proteins[J]. Journal of bioenergetics and biomembranes, 2022, 54(3):145-152.
MARIAN A J. Copy number variants and the genetic enigma of congenital heart disease[J]. Circulation research, 2014, 115(10):821-823.
ZHAO D, GUALLAR E, LONGCHAMPS R, et al. Abstract 049:mitochondrial DNA copy number and incident atrial fibrillation:the atherosclerosis risk in communities study (ARIC)[J]. Circulation, 2018, 137(suppl_1):3217-3231.
HUANG J, TAN L, SHEN R F, et al. Decreased peripheral mitochondrial DNA copy number is associated with the risk of heart failure and long-term outcomes[J]. Medicine, 2016, 95(15):e3323.
LAM E T, BRACCI P M, HOLLY E A, et al. Mitochondrial DNA sequence variation and risk of pancreatic cancer[J]. Cancer research, 2012, 72(3):686-695.
SOBENIN I A, ZHELANKIN A V, KHASANOVA Z B, et al. Heteroplasmic variants of mitochondrial DNA in atherosclerotic lesions of human aortic intima[J]. Biomolecules, 2019, 9(9):455.
TSUTSUI H, KINUGAWA S, MATSUSHIMA S. Oxidative stress and mitochondrial DNA damage in heart failure[J]. Circulation journal, 2008, 72(Suppl A):A31-A37.
邢颀颂,梁刚,武美琼,等.不同城市PM2.5对易感小鼠线粒体损伤的影响[J].中国环境科学, 2019, 39(12):7-23.
魏舒婷,姬晓彤,岳慧峰,等. PM2.5诱导人支气管上皮细胞线粒体损伤[J].环境化学, 2018, 37(9):6-24. WEI S T, JI X T, YUE H F, et al. PM2.5 induced mitochondrial injury of human bronchial epithelial cell[J]. Environmental chemistry, 2018, 37(9):6-24.
ZHANG Q, LI Q Z, MA J C, et al. PM2.5 impairs neurobehavior by oxidative stress and myelin sheaths injury of brain in the rat[J]. Environmental pollution, 2018, 242:994-1001.
范晔,孙志强,于俊博,等. PM2.5诱导人脐静脉内皮细胞EA.hy926线粒体功能异常的研究[J].中华疾病控制杂志, 2019, 23(6):6-21.
CHEN M J, LI B, SANG N. Particulate matter (PM2.5) exposure season-dependently induces neuronal apoptosis and synaptic injuries[J]. Journal of environmental sciences, 2017, 54:336-345.
TOVAR A, CROUSE W L, SMITH G J, et al. Integrative analysis reveals mouse strain-dependent responses to acute ozone exposure associated with airway macrophage transcriptional activity[J]. American journal of physiology lung cellular and molecular physiology, 2022, 322(1):L33-L49.
TIAN L, LI N, LI K, et al. Ambient ozone exposure induces ROS related-mitophagy and pyroptosis via NLRP3 inflammasome activation in rat lung cells[J]. Ecotoxicology and environmental safety, 2022, 240:113663.
ZUCCHINI N, SOUSA G D, PIZZOL J, et al. Molecular mechanisms underlying the hepatotoxicity of lindane in rat hepatocytes:apoptosis regulation and oxidative stress[C]. Germany:Proceedings of the 9th European ISSX Meeting, 2005:219-222.
QIU Y N, WANG G H, ZHOU F, et al. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy[J]. Ecotoxicology and environmental safety, 2019, 167:178-187.
ZHAO Q J, CHEN H, YANG T, et al. Direct effects of airborne PM2.5 exposure on macrophage polarizations[J]. Biochimica et biophysica acta (BBA)-general subjects, 2016, 1860(12):2835-2843.
DENG X B, ZHANG F, WANG L J, et al. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells[J]. Apoptosis, 2014, 19(7):1099-1112.
GE Q W, YANG S J, QIAN Y, et al. Ambient PM2.5 exposure and bone homeostasis:analysis of UK biobank data and experimental studies in mice and in vitro[J]. Environmental health perspectives, 2023, 131(10):107002.
OH S M, KIM H R, PARK Y J, et al. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells)[J]. Mutation research, 2011, 723(2):142-151.
LONGHIN E, HOLME J A, GUTZKOW K B, et al. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells:characterization of the process and possible mechanisms involved[J]. Particle and fibre toxicology, 2013, 10:63.
LIN C M, HUANG T H, CHI M C, et al. N-acetylcysteine alleviates fine particulate matter (PM2.5)-induced lung injury by attenuation of ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation[J]. Ecotoxicology and environmental safety, 2022, 239:113632.
ZHAO D, LIU J, WANG M, et al. Epidemiology of cardiovascular disease in China:current features and implications[J]. Nature reviews cardiology, 2019, 16(4):203-212.
SU X, TIAN J Z, LI B H, et al. Ambient PM2.5 caused cardiac dysfunction through FoxO1-targeted cardiac hypertrophy and macrophage-activated fibrosis in mice[J]. Chemosphere, 2020, 247:125881.
VALAVANIDIS A, FIOTAKIS K, VLACHOGIANNI T. Airborne particulate matter and human health:toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms[J]. Journal of environmental science and health, part c, 2008, 26(4):339-362.
ZHANG X T, ZONG L J, JIA R M, et al. Ozone attenuates chemotherapy-induced peripheral neuropathy via upregulating the AMPK-SOCS3 axis[J]. Journal of cancer research and therapeutics, 2023, 19(4):1031-1039.
PEREPU R S P, DOSTAL D E, GARCIA C, et al. Cardiac dysfunction subsequent to chronic ozone exposure in rats[J]. Molecular and cellular biochemistry, 2012, 360(1/2):339-345.
GOLD D R, LITONJUA A, SCHWARTZ J, et al. Ambient pollution and heart rate variability[J]. Circulation, 2000, 101(11):1267-1273.
MILLER D B, SNOW S J, HENRIQUEZ A, et al. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats[J]. Toxicology and applied pharmacology, 2016, 306:47-57.
THEIS W S, ANDRINGA K K, MILLENDER-SWAIN T, et al. Ozone inhalation modifies the rat liver proteome[J]. Redox biology, 2014, 2:52-60.
MILLER D B, GHIO A J, KAROLY E D, et al. Ozone exposure increases circulating stress hormones and lipid metabolites in humans[J]. American journal of respiratory and critical care medicine, 2016, 193(12):1382-1391.
JANG A S, CHOI I S, KOH Y I. The relation between epithelial proliferation and airway obstruction after ozone exposure[J]. Journal of allergy and clinical immunology, 2002, 109(1):S52.
THOMPSON K C, JONES S H, RENNIE A R, et al. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone[J]. Langmuir, 2013, 29(14):4594-4602.
YANG Q, GE M Q, KOKALARI B, et al. Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice[J]. Journal of allergy and clinical immunology, 2016, 137(2):571-578.
QUE L G, STILES J V, SUNDY J S, et al. Pulmonary function, bronchial reactivity, and epithelial permeability are response phenotypes to ozone and develop differentially in healthy humans[J]. Journal of applied physiology, 2011, 111(3):679-687.
FONTECHA-BARRIUSO M, MARTIN-SANCHEZ D, MARTINEZ-MORENO J M, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases[J]. Biomolecules, 2020, 10(2):347.
ABU SHELBAYEH O, ARROUM T, MORRIS S, et al. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response[J]. Antioxidants, 2023, 12(5):1075.
WANG X M, WANG Y L, HUANG D M, et al. Astragaloside Ⅳ regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice[J]. International immunopharmacology, 2022, 112:109186.
LI C P, QIN G, SHI R Z, et al. Ginsenoside Rg1 reduces toxicity of PM2.5 on human umbilical vein endothelial cells by upregulating intracellular antioxidative state[J]. Environmental toxicology and pharmacology, 2013, 35(1):21-29.
PANWAR V, SINGH A, BHATT M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease[J]. Signal transduction and targeted therapy, 2023, 8(1):375.
LIU T, WU B, WANG Y H, et al. Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells[J]. Molecular medicine reports, 2015, 12(2):1914-1922.
PEI C X, WANG F, HUANG D M, et al. Astragaloside Ⅳ protects from PM2.5-induced lung injury by regulating autophagy via inhibition of PI3K/Akt/mTOR signaling in vivo and in vitro[J]. Journal of inflammation research, 2021, 14:4707-4721.
ZHU S, LI X, DANG B R, et al. Lycium barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress, ER stress and autophagy[J]. Redox report, 2022, 27(1):32-44.
SOBERANES S, URICH D, BAKER C M, et al. Mitochondrial complex Ⅲ-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution[J]. Journal of biological chemistry, 2009, 284(4):2176-2186.
CHE Z, LIU Y, CHEN Y Y, et al. The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type Ⅱ epithelial cells[J]. Mutation research/genetic toxicology and environmental mutagenesis, 2014, 761:35-43.
CHEN J, WU M, LI Y, et al. Autophagy and apoptosis of A549cell exposed to atmospheric PM2.5 in Hangzhou[J]. Environmental pollution&control, 2018, 40(11):1267-1278.
REN N, LIN Y G, LIN Z, et al. Effects of PM2.5 exposure on autophagy and apoptosis in A549 cells[J]. The journal of practical medicine, 2017, 33(16):2616-2619.
SARMIENTO-SALINAS F L, PEREZ-GONZALEZ A, ACOSTA-CASIQUE A, et al. Reactive oxygen species:role in carcinogenesis, cancer cell signaling and tumor progression[J]. Life sciences, 2021, 284:119942.
SAUER H, WARTENBERG M, HESCHELER J. Reactive oxygen species as intracellular messengers during cell growth and differentiation[J]. Cellular physiology and biochemistry, 2001, 11(4):173-186.
FAN K, DONG N, FANG M C, et al. Ozone exposure affects corneal epithelial fate by promoting mtDNA leakage and cGAS/STING activation[J]. Journal of hazardous materials, 2024, 465:133219.
TEPLYAKOVA O, VINNIK Y, DROBUSHEVSKAYA A, et al. Ozone improved the wound healing in type 2 diabetics via down-regulation of IL-8, 10 and induction of FGFR expression[J]. Acta bio-medica, 2022, 93(2):e2022060.
BACKUS G S, HOWDEN R, FOSTEL J, et al. Protective role of interleukin-10 in ozone-induced pulmonary inflammation[J]. Environmental health perspectives, 2010, 118(12):1721-1727.
GONZÁLEZ-GUEVARA E, MARTÍNEZ-LAZCANO J C, CUSTODIO V, et al. Exposure to ozone induces a systemic inflammatory response:possible source of the neurological alterations induced by this gas[J]. Inhalation toxicology, 2014, 26(8):485-491.
LI F, XU M M, WANG M Y, et al. Roles of mitochondrial ROS and NLRP3 inflammasome in multiple ozone-induced lung inflammation and emphysema[J]. Respiratory research, 2018, 19(1):230.
TIAN L, YAN J, LI K, et al. Ozone exposure promotes pyroptosis in rat lungs via the TLR2/4-NF-κ B-NLRP3 signaling pathway[J]. Toxicology, 2021, 450:152668.
SUNIL V R, PATEL-VAYAS K, SHEN J L, et al. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress[J]. Toxicology and applied pharmacology, 2012, 263(2):195-202.
FAKHRZADEH L, LASKIN J D, LASKIN D L. Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-α following ozone inhalation[J]. Toxicology and applied pharmacology, 2008, 227(3):380-389.
POLOSA R, SAPSFORD R J, DOKIC D, et al. Induction of the epidermal growth factor receptor and its ligands in nasal epithelium by ozone[J]. Journal of allergy and clinical immunology, 2004, 113(1):120-126.
FENG F F, JIN Y F, DUAN L J, et al. Regulation of ozone-induced lung inflammation by the epidermal growth factor receptor in mice[J]. Environmental toxicology, 2016, 31(12):2016-2027.
BOWERS E C, MCCULLOUGH S D, MORGAN D S, et al. ERK1/2 and p38 regulate inter-individual variability in ozone-mediated IL-8 gene expression in primary human bronchial epithelial cells[J]. Scientific reports, 2018, 8(1):9398.
WU W D, WAGES P A, DEVLIN R B, et al. SRC-mediated EGF receptor activation regulates ozone-induced interleukin 8 expression in human bronchial epithelial cells[J]. Environmental health perspectives, 2015, 123(3):231-236.
WENG J L, LIU Q, LI C F, et al. TRPA1-PI3K/Akt-OPA1-ferroptosis axis in ozone-induced bronchial epithelial cell and lung injury[J]. Science of the total environment, 2024, 918:170668.
WANG M, ZHANG Y, XU M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model[J]. Free radical biology and medicine, 2019, 134:229-238.
LU Q B, DING Y, LIU Y, et al. Metrnl ameliorates diabetic cardiomyopathy via inactivation of cGAS/STING signaling dependent on LKB1/AMPK/ULK1-mediated autophagy[J]. Journal of advanced research, 2023, 51:161-179.
ZHANG Y, YIN K, WANG D X, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κ B-NLRP3-GSDMD and AMPK-PGC-1α axes[J]. Science of the total environment, 2022, 840:156727.
LI X C, ZHUGE Z B, CARVALHO L R R A, et al. Inorganic nitrate and nitrite ameliorate kidney fibrosis by restoring lipid metabolism via dual regulation of AMP-activated protein kinase and the AKT-PGC1α pathway[J]. Redox biology, 2022, 51:102266.
GRAHAME HARDIE D. AMP-activated/SNF1 protein kinases:conserved guardians of cellular energy[J]. Nature reviews molecular cell biology, 2007, 8(10):774-785.
LI F, ZHANG M, HUSSAIN F, et al. Inhibition of p38 MAPK-dependent bronchial contraction after ozone by corticosteroids[J]. European respiratory journal, 2011, 37(4):933-942.
MCCULLOUGH S D, DUNCAN K E, SWANTON S M, et al. Ozone induces a proinflammatory response in primary human bronchial epithelial cells through mitogen-activated protein kinase activation without nuclear factor-κ B activation[J]. American journal of respiratory cell and molecular biology, 2014, 51(3):426-435.
KIM C S, ALEXIS N E, RAPPOLD A G, et al. Lung function and inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours[J]. American journal of respiratory and critical care medicine, 2011, 183(9):1215-1221.
BAO A H, LI F, ZHANG M, et al. Impact of ozone exposure on the response to glucocorticoid in a mouse model of asthma:involvements of P38 MAPK and MKP-1[J]. Respiratory research, 2014, 15(1):126.
HE F, RU X L, WEN T. Nrf2, a transcription factor for stress response and beyond[J]. International journal of molecular sciences, 2020, 21(13):4777.
KIM M Y, SONG K S, PARK G H, et al. B6C3F1 mice exposed to ozone with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone and/or dibutyl phthalate showed toxicities through alterations of NF-kappaB, AP-1, Nrf2, and osteopontin[J]. Journal of veterinary science, 2004, 5(2):131-137.
RE L, MARTÍNEZ-SÁNCHEZ G, BORDICCHIA M, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo?A preliminary result[J]. European journal of pharmacology, 2014, 742:158-162.
DING S Y, DUANMU X Y, XU L S, et al. Ozone pretreatment alleviates ischemiareperfusion injury-induced myocardial ferroptosis by activating the Nrf2/Slc7a11/Gpx4 axis[J]. Biomedicine&pharmacotherapy, 2023, 165:115185.
ZHANG Y Q, JASON WEST J, MATHUR R, et al. Long-term trends in the ambient PM2.5-and O3-related mortality burdens in the United States under emission reductions from 1990 to 2010[J]. Atmospheric chemistry and physics, 2018, 18(20):15003-15016.
BRUNO M, GE Y, FARRAJ A. Characterization of impacts of the interactions between concentrated ambient particles and ozone on protein and toxicity responses in rat lung and aorta tissues[J]. Society of toxicology, 2020, 165(2):263-271.
KASAHARA D I, MATHEWS J A, PARK C Y, et al. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice[J]. American journal of physiology lung cellular and molecular physiology, 2015, 309(7):L736-L746.
SUN X W, LIN Y N, DING Y J, et al. Surfaxin attenuates PM2.5-induced airway inflammation via restoring surfactant proteins in rats exposed to cigarette smoke[J]. Environmental research, 2022, 203:111864.
XI Y Z, RICHARDSON D B, KSHIRSAGAR A V, et al. Effects of short-term ambient PM2.5 exposure on cardiovascular disease incidence and mortality among U.S. hemodialysis patients:a retrospective cohort study[J]. Environmental health, 2022, 21(1):33.
HEUSSER K, TANK J, HOLZ O, et al. Ultrafine particles and ozone perturb norepinephrine clearance rather than centrally generated sympathetic activity in humans[J]. Scientific reports, 2019, 9(1):3641.