FUTSAETER G, WILSON S. The UNEP Global mercury assessment 2013:Sources, emissions, releases and environmental transport[R].Geneva, Switzerland:Arctic Monitoring and Assessment Programme, 2013.
|
LINDBERG S, BULLOCK R, EBINGHAUS R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[J]. Ambio, 2007, 36(1):19-32.
|
LI P, FENG X B, QIU G L, et al. Mercury pollution in Asia:A review of the contaminated sites[J]. Journal of Hazardous Materials, 2009, 168(2-3):591-601.
|
BARKAY T, WAGNER-DOBLER I. Microbial transformations of mercury:Potentials, challenges, and achievements in controlling mercury toxicity in the environment[J]. Advances in Applied Microbiology, 2005, 57:1-52.
|
HSU-KIM H, KUCHARZYK K H, ZHANG T, et al. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment:a critical review[J]. Environmental Science & Technology, 2013, 47(6):2441-2456.
|
BLOOM N S. On the chemical form of mercury in edible fish and marine invertebrate tissue[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(5):1010-1017.
|
CLARKSON T W, MAGOS L. The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology, 2006, 36(8):609-662.
|
WOOD J M, KENNEDY F S, ROSEN C G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium[J]. Nature, 1968, 220(5163):173-174.
|
JEREMIASON J D, ENGSTROM D R, SWAIN E B, et al. Sulfate addition increases methylmercury production in an experimental wetland[J]. Environmental Science & Technology, 2006, 40(12):3800-3806.
|
TJERNGREN I, KARLSSON T, BJORN E, et al. Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands[J]. Biogeochemistry, 2012, 108(1-3):335-350.
|
FLEMING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources:Molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1):457-464.
|
FENG X B, JIANG H M, QIU G L, et al. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China[J]. Environmental Pollution, 2009, 157(11):2970-2984.
|
GAI K, HOELEN T P, HSU-KIM H, et al. Mobility of four common mercury species in model and natural unsaturated soils[J]. Environmental Science & Technology, 2016, 50(7):3342-3351.
|
BARNETT M O, HARRIS L A, TURNER R R, et al. Formation of mercuric sulfide in soil[J]. Environmental Science & Technology, 1997, 31(11):3037-3043.
|
BENOIT J M, GILMOUR C C, MASON R P. The influence of sulfide on solid phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3)[J]. Environmental Science & Technology, 2001, 35(1):127-132.
|
DEONARINE A, HSU-KIM H. Precipitation of mercuric sulfide nanoparticles in nom-containing water:Implications for the natural environment[J]. Environmental Science & Technology, 2009, 43(7):2368-2373.
|
ZHANG T, KIM B, LEYARD C, et al. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides[J]. Environmental Science & Technology, 2012, 46(13):6950-6958.
|
GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environmental Science & Technology, 2012, 46(5):2715-2723.
|
PHAM A L T, MORRIS A, ZHANG T, et al. Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter:Structural properties, aggregation, and biotransformation[J]. Geochimica Et Cosmochimica Acta, 2014, 133:204-215.
|
ZHANG T, KUCHARZYK K H, KIM B, et al. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides[J]. Environmental Science & Technology, 2014, 48(16):9133-9141.
|
MAZRUI N M, JONSSON S, THOTA S, et al. Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments[J]. Geochimica Et Cosmochimica Acta, 2016, 194:153-162.
|
SMITH R S, WIEDERHOLD J G, KRETZSCHMAR R. Mercury isotope fractionation during precipitation of metacinnabar (beta-HgS) and montroydite (HgO)[J]. Environmental Science & Technology, 2015, 49(7):4325-4334.
|
WOLFENDEN S, CHARNOCK J M, HILTON J, et al. Sulfide species as a sink for mercury in lake sediments[J]. Environmental Science & Technology, 2005, 39(17):6644-6648.
|
GERBIG C A, KIM C S, STEGEMEIER J P, et al. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems[J]. Environmental Science & Technology, 2011, 45(21):9180-9187.
|
GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environmental Science & Technology, 2012, 46(5):2715-2723.
|
RAVICHANDRAN M, AIKEN G R, REDDY M M, et al. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades[J]. Environmental Science & Technology, 1998, 32(21):3305-3311.
|
POULIN B A, GERBIG C A, KIM C S, et al. Effects of sulfide concentration and dissolved organic matter characteristics on the structure of nanocolloidal metacinnabar[J]. Environmental Science & Technology, 2017, 51(22):13133-13142.
|
LUO H W, YIN X P, JUBB A M, et al. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation[J]. Environmental Pollution, 2017, 220:1359-1365.
|
CHEN Y, YIN Y G, SHI J B, et al. Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(24):2415-2447.
|
MANCEAU A, WANG J X, ROVEZZI M, et al. Biogenesis of mercury-sulfur nanoparticles in plant leaves from atmospheric gaseous mercury[J]. Environmental Science & Technology, 2018, 52(7):3935-3948.
|
HESTERBERG D, CHOU J W, HUTCHISON K J, et al. Bonding of Hg(Ⅱ) to reduced organic, sulfur in humic acid as affected by S/Hg ratio[J]. Environmental Science & Technology, 2001, 35(13):2741-2745.
|
MANCEAU A, LEMOUCHI C, ENESCU M, et al. Formation of mercury sulfide from Hg(Ⅱ)-thiolate complexes in natural organic matter[J]. Environmental Science & Technology, 2015, 49(16):9787-9796.
|
RAVICHANDRAN M, AIKEN G R, RYAN J N, et al. Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades[J]. Environmental Science & Technology, 1999, 33(9):1418-1423.
|
HAITZER M, AIKEN G R, RYAN J N. Binding of mercury(Ⅱ) to dissolved organic matter:The role of the mercury-to-DOM concentration ratio[J]. Environmental Science & Technology, 2002, 36(16):3564-3570.
|
SLOWEY A J. Rate of formation and dissolution of mercury sulfide nanoparticles:The dual role of natural organic matter[J]. Geochimica Et Cosmochimica Acta, 2010, 74(16):4693-4708.
|
CHAI L Y, WANG Q W, WANG Y Y, et al. Thermodynamic study on reaction path of Hg(Ⅱ) with S(Ⅱ) in solution[J]. Journal of Central South University of Technology, 2010, 17(2):289-294.
|
BURTON E D, BUSH R T, SULLIVAN L A, et al. Iron-monosulfide oxidation in natural sediments:Resolving microbially mediated s transformations using XANES, Electron Microscopy, and Selective Extractions[J]. Environmental Science & Technology, 2009, 43(9):3128-3134.
|
JEONG H Y, SUN K, HAYES K F. Microscopic and spectroscopic characterization of Hg(Ⅱ) immobilization by mackinawite (FeS)[J]. Environmental Science & Technology, 2010, 44(19):7476-7483.
|
BONE S E, BARGAR J R, SPOSITO G. Mackinawite (FeS) reduces mercury(Ⅱ) under sulfidic conditions[J]. Environmental Science & Technology, 2014, 48(18):10681-10689.
|
AIKING H, GOVERS H, VANTRIET J. Detoxification of mercury, cadmium, and lead in klebsiella-aerogenes nctc-418 growing in continuous culture[J]. Applied and Environmental Microbiology, 1985, 50(5):1262-1267.
|
KELLY D J A, BUDD K, LEFEBVRE D D. Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae[J]. Archives of Microbiology, 2007, 187(1):45-53.
|
KELLY D, BUDD K, LEFEBVRE D D. Mercury analysis of acid- and alkaline-reduced biological samples:Identification of meta-cinnabar as the major biotransformed compound in algae[J]. Applied and Environmental Microbiology, 2006, 72(1):361-367.
|
LEFEBVRE D D, KELLY D, BUDD K. Biotransformation of Hg(Ⅱ) by cyanobacteria[J]. Applied and Environmental Microbiology, 2007, 73(1):243-249.
|
SATAKE K, SHIBATA K, BANDO Y. Mercury sulfide (HgS) crystals in the cell-walls of the aquatic bryophytes, Jungermannia-vulcanicola Steph and Scapania-undulata (L.) Dum[J]. Aquatic Botany, 1990, 36(4):325-341.
|
WU Y, WANG W X. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton[J]. Aquatic Toxicology, 2014, 148:122-129.
|
GILMOUR C C, ELIAS D A, KUCKEN A M, et al. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12):3938-3951.
|
PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6125):1332-1335.
|
BERMAN M, CHASE T, BARTHA R. Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans[J]. Applied and Environmental Microbiology, 1990, 56(1):298-300.
|
CHOI S C, CHASE T, BARTHA R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans ls[J]. Applied and Environmental Microbiology, 1994, 60(11):4072-4077.
|
SCHAEFER J K, ROCKS S S, ZHENG W, et al. Active transport, substrate specificity, and methylation of Hg(Ⅱ) in anaerobic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(21):8714-8719.
|
SCHAEFER J K, MOREL F M M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens[J]. Nature Geoscience, 2009, 2(2):123-126.
|
BRIDOU R, MONPERRUS M, GONZALEZ P R, et al. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers[J]. Environmental Toxicology and Chemistry, 2011, 30(2):337-344.
|
BENOIT J M, MASON R P, GILMOUR C C. Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria[J]. Environmental Toxicology and Chemistry, 1999, 18(10):2138-2141.
|
LU X, LIU Y R, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem[J]. Environmental Science & Technology, 2016, 50(8):4366-4373.
|
DROTT A, LAMBERTSSON L, BJORN E, et al. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments[J]. Environmental Science & Technology, 2007, 41(7):2270-2276.
|
BENOIT J M, GILMOUR C C, MASON R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters[J]. Environmental Science & Technology, 1999, 33(6):951-957.
|
BENOIT J M, GILMOUR C C, HEYES A, et al. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems[J]. Acs Symposium Series, 2003:262-297.
|
MERRITT K A, AMIRBAHMAN A. Mercury methylation dynamics in estuarine and coastal marine environments - A critical review[J]. Earth-Science Reviews, 2009, 96(1-2):54-66.
|
FITZGERALD W F, LAMBORG C H, HAMMERSCHMIDT C R. Marine biogeochemical cycling of mercury[J]. Chemical Reviews, 2007, 107(2):641-662.
|
DROTT A, BJORN E, BOUCHET S, et al. Refining thermodynamic constants for mercury(Ⅱ)-sulfides in equilibrium with metacinnabar at sub-micromolar aqueous sulfide concentrations[J]. Environmental Science & Technology, 2013, 47(9):4197-4203.
|
DYRSSEN D, WEDBORG M.The sulfur-mercury(Ⅱ) system in natural-waters[J]. Water Air & Soil Pollution, 1991, 56(1):507-519.
|
SKYLLBERG U. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions:Illumination of controversies and implications for MeHg net production[J]. Journal of Geophysical Research-Biogeosciences, 2008, 113-114.
|
SILVER S, PHUNG L T. A bacterial view of the periodic table:Genes and proteins for toxic inorganic ions[J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32(11-12):587-605.
|
JONSSON S, SKYLLBERG U, NILSSON M B, et al. Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota[J]. Nature Communications, 2014, 5:10.
|
JONSSON S, SKYLLBERG U, NILSSON M B, et al. Mercury methylation rates for geochemically relevant Hg-Ⅱ species in sediments[J]. Environmental Science & Technology, 2012, 46(21):11653-11659.
|
DEHNER C A, BARTON L, MAURICE P A, et al. Size-dependent bioavailability of hematite (alpha-Fe2O3) nanoparticles to a common aerobic bacterium[J]. Environmental Science & Technology, 2011, 45(3):977-983.
|
MUKHA I P, EREMENKO A M, SMIRNOVA N P, et al. Antimicrobial activity of stable silver nanoparticles of a certain size[J]. Applied Biochemistry and Microbiology, 2013, 49(2):199-206.
|