王悦,周孜迈,邓文娜,等.两种体系去除水体中的砷[J].环境化学,2018,37(12):2613-2620. WANG Y, ZHOU Z M, DENG W N, et al. Removal of arsenic from water by two systems[J]. Environmental Chemistry, 2018, 37(12):2613-2620(in Chinese).
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization, and International Agency for Research on Cancer. Some drinking-water disinfectants and contaminants, including arsenic[R]. 2004, 84:269.
汪宁欣,刘婷婷,谢希琳,等.无机砷与两种典型天然有机质络合行为比较[J].环境科学学报,2019,39(8):2593-2601. WANG N X, LIU T T, XIE X L, et al. Comparison of complexation behavior between inorganic arsenic and two typical natural organic matter[J]. Acta Scientiae Circumstantiate, 2019, 39(8):2593-2601(in Chinese).
GUO H M, ZHANG D, NI P, et al. Hydrogeological and geochemical comparison of high arsenic groundwaters in Inland Basins, P.R. China[J]. Procedia Earth & Planetary Science, 2017, 17:416-419.
RASHEED H, SLACK R, KAY P. Human health risk assessment for arsenic:A critical review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(19/20):1529-1583.
黄飞,周昉,姜舒扬,等.绿藻胞外聚合物对无机砷生物累积特征的影响[J].环境化学,2019,38(5):1021-1027. HUANG F, ZHOU F, JIANG S Y, et al. Effects of extracellular polymers of green algae on bioaccumulation characteristics of inorganic arsenic[J]. Environmental Chemistry, 2019, 38(5):1021-1027(in Chinese).
刘金鑫,谢邵文,杨芬,等.不同生长期和磷浓度下砷酸盐对铜绿微囊藻生长及砷吸收的影响[J].环境科学学报,2017,37(6):2061-2068. LIU J X, XIE S W, YANG F, et al. Effect of arsenate on the growth and arsenic absorption of Microcystis aeruginosa in different growth period and phosphorus concentration[J]. Acta Scientiae Circumstantiate, 2017, 37(6):2061-2068(in Chinese).
SHAKOOR M B, NAWAZ R, HUSSAIN F, et al. Human health implications, risk assessment and remediation of As-contaminated water:A critical review[J]. Science of the Total Environment, 2017, 601/602:756-769.
TSHERI M, MAHMUDY GHARAIE M H, MEHRZAD J, et al. Hydrogeochemical and isotopic evaluation of arsenic contaminated waters in an argillic alteration zone[J]. Journal of Geochemical Exploration, 2017, 175:1-10.
丁腾达,阚啸林,吴振华,等.砷对绿藻的毒性效应及氧化还原条件的影响[J].环境化学,2016,35(5):1084-1089. DING T D, KAN X L, WU Z H, et al. Toxic effect of arsenic on green algae and the effect of redox conditions[J]. Environmental Chemistry, 2016, 35(5):1084-1089(in Chinese).
修伟.耐砷铁氧化菌的除砷特征及其机理研究[D].北京:中国地质大学,2016. XIU W. Study on arsenic removal characteristics and mechanism of arsenic resistant iron oxide bacteria[D]. Beijing:China University of Geosciences, 2016(in Chinese).
GUO H M, WEN D G, LIU Z Y, et al. A review of high arsenic groundwater in Mainland and Taiwan, China:Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41(1):196-217.
胡一帆,王文兵,仵彦卿.弱磁场强化零价铁去除水中砷的效果[J].环境化学,2019,38(5):1074-1081. HU Y F, WANG W B, WU Y Q. Effect of strengthening zero valent iron to remove arsenic from water by weak magnetic field[J]. Environmental Chemistry, 2019, 38(5):1074-1081(in Chinese).
于士淼.自然水体生物除砷技术研究[D].济南:山东建筑大学,2012. YU S M. Study on biological arsenic removal technology in natural water[D]. Jinan:Shandong Jianzhu University, 2012(in Chinese)
FAZI S, AMALFITANO S, CASENTINI B, et al. Arsenic removal from naturally contaminated waters:A review of methods combining chemical and biological treatments[J]. Rendiconti Lincei, 2016, 27(1):51-58.
ZHANG J, ZHOU W, LIU B, et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 2015, 49(10):5956-5964.
VALENZUELA C, CAMPOS V L, YANEZ J, et al. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J]. Bulletin of Environmental Contamination & Toxicology, 2009, 82(5):593-596.
杨宏,熊晓丽,段晓东,等.贫营养条件下生物除铁除锰滤池生态稳定性研究[J].环境科学,2010,31(1):99-103. YAANG H, XIONG X L, DUAN X D, et al. Study on ecological stability of biological iron and manganese removal filter under poor nutrition condition[J]. Environmental Sciences, 2010, 31(1):99-103(in Chinese).
GARBOWSKI T. Changes in the physico-chemical parameters of water as a result of long-term contact with biomass, on the example of pine bark (Pinus sylvestris)[J]. Water Air and Soil Pollution, 2019, 230:104.
VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel, 2012, 94:1-33.
周梦娟,缪恒锋,陆震明,等.碳源对反硝化细菌的反硝化速率和群落结构的影响[J].环境科学研究,2018,31(12):2047-2054. ZHOU M J, LIAO H F, LU Z M, et al. Effects of carbon sources on denitrification rate and community structure of denitrifying bacteria[J]. Research of Environmental Sciences, 2018, 31(12):2047-2054(in Chinese).
AU D, AI N, DUC T V, et al. Bactericidal magnetic nanoparticles with iodine loaded on surface grafted poly (N-vinylpyrrolidone)[J]. Journal of Materials Chemistry B, 2015, 3(5):840-848.
孟婷,杨宏.高效反硝化细菌的快速培养及群落结构多样性分析[J].环境科学,2017,38(9):3816-3822. MENG T, YANG H. Rapid culture and diversity analysis of community structure of denitrifying bacteria with high efficiency[J]. Environmental Science, 2017, 38(9):3816-3822(in Chinese).
CROGNALE S, CASENTINI B, AMALFITANO S, et al. Biological As(Ⅲ) oxidation in biofilters by using native groundwater microorganisms[J]. Science of The Total Environment, 2019, 651:93-102.
LI X Y, ZHANG L S, WANG G J. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales[J]. PLOS ONE, 2014, 9(3):e92236.
杨柳.生物滤池同步去除地下水中铁、锰、砷的工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2014. YANG L. Simultaneous removal of iron, manganese and arsenic from groundwater by Biofilter[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).