[1] DUTTA P K, PEHKONEN S O, SHARMA V K, et al. Photo-catalytic oxidation of arsenic(Ⅲ):Evidence of hydroxyl radicals[J]. Environmental Science & Technology, 2005, 39(6):1827-1834
[2] 李优平, 王玉霞, 段晋明, 等. 硫酸钛混凝去除无机砷(Ⅲ)的效能[J]. 环境工程学报, 2015, 9(6):2875-2879
[3] ADAK A, MANGALGIRI K P, LEE J, et al. UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals[J]. Water Research, 2015, 70:74-85
[4] JIANG Bo, GUO Jianbo, WANG Zhaohui, et al. A green approach towards simultaneous remediations of chromium (Ⅵ) and arsenic (Ⅲ) in aqueous solution[J]. Chemical Engineering Journal, 2014, 262:1144-1151
[5] NACHMAN K E, RABER G, FRANCESCONI K A, et al. Arsenic species in poultry feather meal[J]. Science of the Total Environment, 2012, 417(4):183-188
[6] WANG Fumin, CHEN Zhangliu, ZHANG Lu, et al. Arsenic uptake and accumulation in rice (Oryza sativa L.) at different growth stages following soil incorporation of roxarsone and arsanilic acid[J]. Plant and Soil, 2006, 285(1/2):359-367
[7] ZHU Xiangdong, WANG Yujun, LIU Cun, et al. Kinetics, intermediates and acute toxicity of arsanilic acid photolysis[J]. Chemosphere, 2014, 107:274-281
[8] CZAPLICKA M, BRATEK Ł, JAWOREK K, et al. Photo-oxidation of p-arsanilic acid in acidic solutions:Kinetics and the identification of by-products and reaction pathways[J]. Chemical Engineering Journal, 2014, 243:364-371
[9] GARBARINO J R, BEDNAR A J, RUTHERFORD D W, et al. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting[J]. Environmental Science & Technology, 2003, 37(8):1509-1514
[10] DATTA R, SARKAR D, SHARMA S, et al. Arsenic biogeo-chemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils:An incubation study[J]. Science of the Total Environment, 2006, 372(1):39-48
[11] ZHENG Shan, JIANG Wenjun, CAI Yong. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension[J]. Catalysis Today, 2014, 224:83-88
[12] 吕小佳, 林逢凯, 胥峥. UV及UV/US降解对二氯苯水溶液的研究[J]. 环境工程学报, 2010, 4(11):2499-2504
[13] NIU Junfeng, LI Yang, WANG Wenlong. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis:Kinetics and mechanism[J]. Chemosphere, 2013, 92(11):1423-1429
[14] QIU Huimin, GENG Jinju, SHEN Chenyang, et al. Aquatic photooxidation of phosphite in the presence of ferric and oxalate ions[J]. Chemical Engineering Journal, 2015, 269:408-415
[15] DHAR R K, ZHENG Y, RUBENSTONE J, et al. A rapid colorimetric method for measuring arsenic concentrations in groundwater[J]. Analytica Chimica Acta, 2004, 526(2):203-209
[16] LI Yang, NIU Junfeng, WANG Wenlong, et al. Photolysis of enrofloxacin in aqueous systems under simulated sunlight irradiation:Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5):892-897
[17] HE Zhong, YANG Shaogui, JU Yongming, et al. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon:Mechanism implication[J]. Journal of Environmental Sciences, 2009, 21(2):268-272
[18] VULLIET E, EMMELIN C, CHOVELON J M. Influence of pH and irradiation wavelength on the photochemical degradation of sulfonylureas[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 163(1/2):69-75
[19] CHEN Wanru, HUANG Chinghua. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides[J]. Journal of Hazardous Materials, 2012, 227-228:378-385
[20] KOUMAKI E, MAMAIS D, NOUTSOPOULOS C, et al. Degradation of emerging contaminants from water under natural sunlight:The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products[J]. Chemosphere, 2015, 138:675-681
[21] ZHAN Manjun, YANG Xi, XIAN Qiming, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances[J]. Chemosphere, 2006, 63(3):378-386