[1] 范俊楠, 赵建伟, 朱端卫. 湖泊氮素氧化及脱氮过程研究进展[J]. 生态学报, 2012, 32(15):4924-4931
[2] 吕娟, 陈银广, 顾国维. 厌氧、缺氧、好氧多级交替SBR脱氮除磷试验研究[J]. 环境污染与防治, 2007, 29(9):648-651
[3] 杜晓丽, 徐祖信, 孙长虹, 等. 基于延迟往复流的强化复氧人工湿地脱氮效果初探[J]. 水处理技术, 2014, 40(8):56-58
[4] 胡静, 董仁杰, 吴树彪, 等. 脱水铝污泥对水溶液中磷的吸附作用研究[J]. 水处理技术, 2010, 36(5):42-45
[5] YANG Y, ZHAO Y Q, WANG S P, et al. A promising approach of reject water treatment using a tidal flow constructed wetland system employing alum sludge as main substrate[J]. Water Science and Technology, 2011, 63(10):2367-2373
[6] DOUGLAS G, ADENEY J, JOHNSTON K, et al. Major element, trace element, nutrient, and radionuclide mobility in a mining by-product-amended soil[J]. Journal of Environment Quality, 2012, 41(6):1818-1834
[7] BAI Leilei, WANG Changhui, PEI Yuansheng. Nitrogen and phosphorus removal from secondary effluent using drinking water treatment residuals fixed-bed column with intermittent operation[J]. Water Science and Technology:Water Supply, 2014, 14(5):812-819
[8] ZHAO Y Q, BABATUNDE A O, HU Y S, et al. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment[J]. Process Biochemistry, 2011, 46(1):278-283
[9] ZHAO Y Q, ZHAO X H, BABATUNDE A O. Use of dewatered alum sludge as main substrate in treatment reed bed receiving agricultural wastewater:Long-term trial[J]. Bioresource Technology, 2009, 100(2):644-648
[10] BABATUNDE A O, ZHAO Y Q, ZHAO X H. Alum sludge-based constructed wetland system for enhanced removal of P and OM from wastewater:Concept, design and performance analysis[J]. Bioresource Technology, 2010, 101(16):6576-6579
[11] HU Y S, ZHAO Y Q, ZHAO X H, et al. Comprehensive analysis of step-feeding strategy to enhance biological nitrogen removal in alum sludge-based tidal flow constructed wetlands[J]. Bioresource Technology, 2012, 111:27-35
[12] HU Yuansheng, ZHAO Yaqian, ZHAO Xiaohong, et al. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland[J]. Environmental Science & Technology, 2012, 46(8):4583-4590
[13] WENDLING L A, DOUGLAS G B, COLEMAN S, et al. Nutrient and dissolved organic carbon removal from water using mining and metallurgical by-products[J]. Water Research, 2012, 46(8):2705-2717
[14] OLIVER D P, PAN Yiyong, ANDERSON J S, et al. Sorption of pesticides by a mineral sand mining by-product, neutralised used acid (NUA)[J]. Science of the Total Environment, 2013, 442:255-262
[15] 王圣瑞, 焦立新, 金相灿, 等. 长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征[J]. 环境科学学报, 2008, 28(1):37-43
[16] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:146-175
[17] APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater[M]. 20nd ed. Washington DC, USA:American Public Health Association, 1998
[18] 杨斌武. 水处理滤料的表面性质及其过滤除油性能研究[D]. 兰州:兰州交通大学, 2008
[19] 孙军, 刘东艳. 多样性指数在海洋浮游植物研究中的应用[J]. 海洋学报, 2004, 26(1):62-75
[20] BABATUNDE A O, ZHAO Y Q, DOYLE R J, et al. Performance evaluation and prediction for a pilot two-stage on-site constructed wetland system employing dewatered alum sludge as main substrate[J]. Bioresource Technology, 2011, 102(10):5645-5652
[21] 仝武刚, 王继徽, 刘大鹏. 高浓度氨氮废水的处理现状与发展[J]. 工业水处理, 2002, 22(9):9-12
[22] 邱立平, 马军. 曝气生物滤池的短程硝化反硝化机理研究[J]. 中国给水排水, 2002, 18(11):1-4
[23] 杨麒, 曾小明, 曾光明, 等. 同步硝化反硝化机理的研究进展[J]. 微生物学通报, 2003, 30(4):88-91
[24] JUCK D, CHARLS T, WHYTE L G, et al. Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities[J]. FEMS Microbiology Ecology, 2000, 33(3):241-249
[25] MCBAIN A J, BARTOLO R G, CATRENICH C E, et al. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms[J]. Applied and Environmental Microbiology, 2003, 69(1):177-185
[26] ORITA M, IWAHANA H, KANAZAWA H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(4):2766-2770
[27] PETERS S, KOSCHINSKY S, SCHWIEGER F, et al. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes[J]. Applied and Environmental Microbiology, 2000, 66(3):930-936
[28] 杨洋, 左剑恶, 全哲学, 等. UASB反应器中厌氧氨氧化污泥的种群分析[J]. 中国环境科学, 2006, 26(1):52-56
[29] FERIS K, RAMSEY P, FRAZAR C, et al. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient[J]. Applied and Environmental Microbiology, 2003, 69(9):5563-5573
[30] OCHSENREITER T, SELEZI D, QUAISER A, et al. Diversity and abundance of crenarchaeo ta in terrestrial habitats studied by 16S RNA surveys and real time PCR[J]. Environmental Microbiology, 2003, 5(9):787-797
[31] WAGNER M, LOY A, NOGUEIRA R, et al. Microbial community composition and function in wastewater treatment plants[J]. Antonie van Leeuwenhoek, 2002, 81(1/2/3/4):665-680
[32] GINGERAS T R, GHANDOUR G, WANG E, et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays[J]. Gene Research, 1998, 8(5):435-448