WU D, LI X K, TANG Y M, et al. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation:Efficiency and intermediates[J]. Chemosphere, 2017, 180:247-252.
HUANG D H, YIN L F, NIU J F. Photoinduced hydrodefluorination mechanisms of perfluorooctanoic acid by the SiC/graphene catalyst[J]. Environmental Science & Technology, 2016, 50(11):5857-5863.
SHANG E X, LI Y, NIU J F, et al. Photocatalytic degradation of perfluorooctanoic acid over Pb-BiFeO3/rGO catalyst:Kinetics and mechanism[J]. Chemosphere, 2018, 211:34-43.
TROJANOWICZ M, CZAJKA A B, BARTOSIEWICZ I, et al. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)-A review of recent advances[J]. Chemical Engineering Journal, 2018, 336:170-199.
SILVA F L D, LAITINEN T, PIRILA M, et al. Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3 and Ga2O3 catalysts[J]. Topics in Catalysis, 2017, 60(17-18):1345-1358.
ESPANA V A A, MALLAVARAPU M, NAIDU R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA):A critical review with an emphasis on field testing[J]. Environmental Technology & Innovation, 2015, 4:168-181.
ROSS I, MCDONOUGH J, MILES J, et al. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 2018, 28(2):101-126.
LIU T Z, GU Y R, XING D Y, et al. Rapid and high-capacity adsorption of PFOS and PFOA by regenerable ammoniated magnetic particle[J]. Environmental Science and Pollution Research, 2018, 25(14):13813-13822.
RUIZ B G, RIBAO P, DIBAN N, et al. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst[J]. Journal of Hazardous Materials, 2018, 344:950-957.
PANCHANGAM S C, YeELLATUR C S, YANG J S, et al. Facile fabrication of TiO2-graphene nanocomposites (TGNCs) for the efficient photocatalytic oxidation of perfluorooctanoic acid (PFOA)[J]. Journal of Environmental Chemical Engineering, 2018, 6(5):6359-6369.
WU D, LI X K, ZHANG J X, et al. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation[J]. Separation and Purification Technology, 2018, 207:255-261.
WU Y Y, LI Y Q, FANG C,S et al. Highly efficient degradation of perfluorooctanoic acid over a MnOx-modified oxygen-vacancy-rich In2O3 photocatalyst[J]. Chem Cat Chem, 2019, 11(9):2297-2303.
ZHAO B X, ZHANG P Y. Photocatalytic decomposition of perfluorooctanoic acid with β-GaO wide bandgap photocatalyst[J]. Catalysis Communications, 2009, 10(8):1184-1187.
HE R A, ZHOU J Q, FU H Q, et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2018, 430:273-282.
LIM H, RAWAL S B. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation[J]. Progress in Natural Science:Materials International, 2017, 27(3):289-296.
CHEN M J, LI Y, WANG Z Y, et al. Controllable synthesis of core-shell Bi@amorphous Bi2O3 nanospheres with tunable optical and photocatalytic activity for NO removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(37):10251-10258.
YIN L F, NIU J F, SHEN Z Y, et al. The electron structure and photocatalytic activity of Ti(Ⅳ) doped Bi2O3[J]. Science China Chemistry, 2010, 54(1):180-185.
YIN L F, NIU J F, SHEN Z Y, et al. Mechanism of reductive decomposition of pentachlorophenol by Ti-doped β-Bi2O3 under visible light irradiation[J]. Environmental Science & Technology, 2010, 44(14):5581-5586.
LUO Q, WANG Z Y, FENG M B, et al. Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems:The impact of metal ions[J]. Environmental Pollution, 2017, 224:649-657.