DE CISNEROS C J, CABALLERO E. Carbon isotope values as paleoclimatic indicators. Study on stalagmite from Nerja Cave, South Spain[J]. Carbonates and Evaporites, 2011, 26(1):41-44.
陈中笑, 赵琦. 全球碳循环研究中的δ13C方法及其进展[J]. 地球科学进展, 2011, 26(11):1225-1233. CHEN Z X, ZHAO Q. δ13C Methods and its progress in the study of global carbon cycle[J]. Advances in Earth Science, 2011, 26(11):1225-1233(in Chinese).
李红春, 袁道先. 北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J]. 中国岩溶, 1997, 16(4):285-295. LI H C, YUAN D X. Interannual-resolution on δ13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in ShiHua Cave, Beijing[J]. Carsologica Sinica, 1997, 16(4):285-295(in Chinese).
GENTY D, BAKER A, MASSAULT M, et al. Dead carbon in stalagmites:Carbonate bedrock paleo-dissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimicaet Cosmochimica Acta, 2001, 65(20):3443-3457.
MANDIĆ M, MIHEVC A, LEIS A, et al. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnskajama, Slovenia[J]. International Journal of Speleology, 2013, 42(3):279-289.
张美良, 朱晓燕, 吴夏, 等. 洞穴次生化学碳酸盐沉积物-石笋的气候替代指标的意义与不确定性因素[J]. 地球与环境, 2015, 43(2):138-151. ZHANG M L, ZHU X Y, WU X, et al. Significance and uncertainty of speleothem-stalagmite proxies[J]. Earth and Environment, 2015, 43(2):138-151(in Chinese).
沈蔚, 王建力, 王家录, 等. 贵州纳朵洞洞穴水化学性质和δ13CDIC特征及其影响因素研究[J]. 中国岩溶, 2016(1):98-105. SHEN W, WANG J L, WANG J L, et al. Hydrochemistry and δ13 CDIC features of cave water n Naduo cave,Guizhou and their influencing[J]. Carsologica Sinica, 2016(1):98-105(in Chinese).
刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32(1):1-10. LIU Z H, YUAN D X, HE S Y, et al. Origin and forming mechanisms of tracertine at Huang Ravine of Sichuan[J]. Geochimica, 2003, 32(1):1-10(in Chinese).
MILLO C, STRIKIS N M, VONHOF H B, et al. Last glacial and Holocene stable isotope record of fossil dripwater from subtropical Brazil based on analysis of fluid inclusions in stalagmites[J]. Chemical Geology, 2017, 468:84-96.
彭玲莉, 李廷勇. 岩溶洞穴滴水环境监测研究进展[J]. 中国岩溶, 2012, 31(3):316-326. PEN L L, LI L Y. Research progress of monitoring for dripping water environment in karst caves[J]. Carsologica Sinica, 2012, 31(3):316-326(in Chinese).
BAR-MATTHEWS M, AYALON A, KAUFMAN A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events:Soreq cave, Israel[J]. Earth and Planetary Science Letters, 1999,166(1/2):85-95.
SPÖTL C, FAIRCHILD I J, TOOTH A F. Cave air control on dripwater geochemistry, Obir Caves (Austria):implications forspeleothem deposition in dynamically ventilated caves[J].Geochimica et Cosmochimica Acta,2005, 69(10):2451-2468.
李坡, 贺卫, 钱治, 等. 双河洞地质公园研究[M]. 贵阳:贵州人民出版社, 2008:58-101. LI P, HE W, QIAN Z, et al. Study on Shuanghe Cave geopark[M]. Guiyang:Guizhou People's Press, 2008:58 -101(in Chinese).
韦跃龙, 罗书文, 陈伟海, 等. 贵州绥阳地质公园白云岩喀斯特景观特征及其形成演化分析[J].地球学报, 2018, 39(3):365-383. WEI Y L, LUO W S, CHEN W H, et al. Characteristics and formation and evolution analysis of the dolomite karst landscape of suiyang geopark, Guizhou Provinces[J]. Acta Geoscientica Sinica, 2018, 39(3):365-383(in Chinese).
曹明达, 周忠发, 张结, 等. 白云岩洞穴系统中水-气CO2分压对洞穴水水文化学过程的影响:以贵州双河洞为例[J]. 环境科学与技术, 2017, 40(3):54-60. CAO M D, ZHOU Z F, ZHANG J, et al. Effects of partial pressure of CO2 of water/gas on hydrochemical process of cave water:A case study in dolomite cave system of Shuanghe cave in Guizhou Province[J]. Environmental Science & Technology, 2017, 40(3):54-60(in Chinese).
汪炎林, 周忠发, 田衷珲, 等. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12):172-182. WANG Y L, ZHOU Z F, TIAN Z H, et al. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu Revier[J]. Environmental Chemistry, 2017, 36(12):172-182(in Chinese).
康志强,何师意.表层岩溶系统碳迁移路径及其土被效应探讨[J].中国岩溶, 2011, 30(4):456-460. KANG Z Q, HE S Y. The regolith effect on carbon transfer path in epi-karst system[J]. Carsologica Sinica, 2011, 30(4):456-460(in Chinese).
HESS J W, WHITE W B. Groundwater geochemistry of the carbonate karst aquifer, southcentral Kentucky, USA[J]. Appl Geochem, 1993, 8(2):189-204.
蔡小薇, 赵景波. 西安长延堡夏季土壤CO2释放量的变化及影响因素[J].干旱区地理, 2005, 28(3):316-319. CAI X W, ZHAO J B. Change and the influence factors of the amount of CO2 released from Soil in Xi'an area, Shaanxi[J]. Arid Land Geography, 2005, 28(3):316-319(in Chinese).
PU J, WANG A, YIN J, et al. PCO2 variations of cave air and cave water in a subtropical cave, SW China[J]. Carbonates and Evaporites, 2018, 33(3):477-487.
张结, 周忠发, 汪炎林, 等. 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J]. 地理学报, 2018, 73(9):79-93. ZHANG J, ZHOU Z F, WANG Y L, et al. Variation of CO2 and its response to the drip hydrogeochemistry in caves under the short-time high-strength tourism activities[J]. Acta Geographica Sinica, 2018, 73(9):79-93(in Chinese).
LANG M, FAIMON J, PRACNY P, et al. A show cave management:Anthropogenic CO2 in atmosphere of Výpustek Cave (Moravian Karst, Czech Republic)[J]. Journal for Nature Conservation, 2017, 35:40-52.
KRAJNC B, FERLAN M, OGRINC N. Soil CO2 sources above a subterranean cave-Pisani rov (Postojna Cave, Slovenia)[J]. Journal of Soils and Sediments, 2017, 17(7):1883-1892.
罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展, 2014, 29(12):1333-1340. LUO W J, WANG S J, LIU X M. Research progresses and prospect of chimney effect about carbon cycle in the Karst Cave System[J]. Advances in Earth Science, 2014,29(12):1333-1340(in Chinese).
童晓宁, 周厚云, 黄颖, 等. 广东英德宝晶宫CO2浓度的时空变化特征[J]. 热带地理, 2013, 33(4):439-443. TONG X N, ZHOU H Y, HUANG Y, et al. Spatio-temporal variation of air CO2 concentration in Baojinggong Cave, Guangdong, China[J]. Tropical Geography, 2013, 33(4):439-443(in Chinese).
BREECKER D O, PAYNE A E, QUADE J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J]. Geochimica et Cosmochimica Acta, 2012, 96:230-246.
殷超, 周忠发, 田衷珲,等. 土壤CO2与喀斯特洞穴CO2季节变化响应分析[J]. 水土保持学报, 2017, 31(4):304-310. YIN C, ZHOU Z F, TIAN Z H, et al. Seasonal response between soil and karst cave CO2 concentration[J]. Journal of Soil and Water Conservation, 2017, 31(4):304-310(in Chinese).
肖时珍, 蓝家程, 袁道先, 等. 贵州施秉白云岩喀斯特区水化学和溶解无机碳稳定同位素特征[J].环境科学, 2015, 36(6):2085-2093. XIAO S Z, NAN J C, YUAN D X, et al. Hydrochemistry and dissolved inorganic carbon stable isotope of Shibing dolomite karst area in Guizhou Province[J]. Environmental Science, 2015, 36(6):2085-2093(in Chinese).
李廷勇, 李红春, 向晓晶, 等. 碳同位素(δ13C)在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究[J]. 中国科学:地球科学, 2012, 42(4):526-535. LI T Y, LI H C, XIANG X J, et al. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Sci China Earth Sci, 2012, 42(4):526-535(in Chinese).
JOHNSON K R, HU C Y, BELSHAW N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem:The potential for high-resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters, 2006, 244(1/2):394-407.
王世杰, 罗维均, 刘秀明, 等. 贵州七星洞系统中水文地球化学特征对滴水δ13CDIC的影响及其意义[J]. 地学前缘, 2009, 16(6):66-76. WANG S J, LUO W J, LIU X M, et al. Effects of hydrogeochemistry on δ13CDIC values of drip water in Qixing Cave, Guizhou[J]. Earth Science Frontiers, 2009, 16(6):66-76(in Chinese).
黄春霞, 李廷勇, 韩立银, 等. 重庆芙蓉洞洞穴水DIC-δ13C的变化特征及影响因素[J]. 中国岩溶, 2016, 35(3):299-306. HUANG C X, LI T Y, HAN L G, et al. Variations of cave water DIC-δ13C and its influencing factors in Furong cave, Chongqing[J]. Carsologica Sinica, 2016, 35(3):299-306(in Chinese).
VERHEYDEN S, KEPPENS E, FAIRCHILD I J, et al. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem:Implications for paleoclimate reconstructions[J]. Chemical Geology, 2000, 169(1/2):131-144.
朱小龙, 罗维均, 王世杰. 贵州凉风洞洞穴系统锶同位素特征[J]. 地球化学, 2018, 47(2):209-216. ZHU X L, LUO W J, WANG S J. The characteristics of 87Sr/86Sr in the Liangfeng Cave system, Guizhou, China[J]. Geochimica, 2018, 47(2):209-216(in Chinese).
李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物δ13C, δ18O特征及意义[J]. 地质论评, 2008, 54(5):712-720. LI T Y, LI H C, LI J Y, et al. The δ13C and δ18O features and their significances of speleothems in Furong Cave, Chongqing, China[J]. Geological Review, 2008, 54(5):712-720(in Chinese).
PEYRAUBE N, LASTENNET R, DENIS A, et al. Estimation of epikarst air PCO2 using measurements of water δ13CTDIC, cave air PCO2 and δ13CCO2[J]. Geochimica et Cosmochimica Acta, 2013, 118:1-17.
任坤, 潘晓东, 曾洁, 等. 岩溶区不同土地利用下地下水碳同位素地球化学特征及生态意义[J]. 环境科学, 2019, 40(10):4523-4531. REN K, PAN X D, ZENG J, et al. Geochemical characteristics and ecological significance of carbon isotope in groundwater under different land use types in karst area[J]. Environmental Science, 2019, 40(10):4523-4531(in Chinese).