LEGLER J, BROUWER A. Are brominated flame retardants endocrine disruptors?[J]. Environment International, 2003, 29(6):879-885.
POTVIN C M, LONG Z, ZHOU H. Removal of tetrabromobisphenol A by conventional activated sludge, submerged membrane and membrane aerated biofilm reactors[J]. Chemosphere, 2012, 89(10):1183-1188.
ZHANG Y, TANG Y, LI S, et al. Sorption and removal of tetrabromobisphenol A from solution by graphene oxide[J]. Chemical Engineering Journal, 2013, 222:94-100.
QU R, FENG M, WANG X, et al. Rapid removal of tetrabromobisphenol A by ozonation in water:Oxidation products, reaction pathways and toxicity assessment[J]. PloS One, 2015, 10(10):e0139580.
XU J, MENG W, ZHANG Y, et al. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway[J]. Applied Catalysis B:Environmental, 2011, 107(3-4):355-362.
TIAN J, LIU R, LIU Z, et al. Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N-CQDs[J]. Chinese Journal of Catalysis, 2017, 38(12):1999-2008.
YU C, WU Z, LIU R, et al. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B:Environmental, 2017, 209:1-11.
ZENG D, YANG K, YU C, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B:Environmental, 2018, 237:449-463.
HWANG Y J, YANG S, JEON E H, et al. Photocatalytic oxidation activities of TiO2 nanorod arrays:A surface spectroscopic analysis[J]. Applied Catalysis B:Environmental, 2016, 180:480-486.
BAI X, SUN C, LIU D, et al. Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension[J]. Applied Catalysis B:Environmental, 2017, 204:11-20.
ZOU W, ZHANG L, LIU L, et al. Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light[J]. Applied Catalysis B:Environmental, 2016, 181:495-503.
BARRAS A, CORDIER S, BOUKHERROUB R. Fast photocatalytic degradation of rhodamine B over[Mo6Br8(N3)6]2- cluster units under sun light irradiation[J]. Applied Catalysis B:Environmental, 2012, 123-124:1-8.
CHEN S, WANG L, WU Q, et al. Advanced non-precious electrocatalyst of the mixed valence CoOxnanocrystals supported on N-doped carbon nanocages for oxygen reduction[J]. Science China Chemistry, 2015, 58(1):180-186.
ZHANG H, TIAN W, GUO X, et al. Flower-like cobalt hydroxide/oxide on graphitic carbon nitride for visible-light-driven water oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(51):35203-35212.
WANG X, TIAN W, ZHAI T, et al. Cobalt(Ⅱ,Ⅲ) oxide hollow structures[J]. Fabrication, Properties and Applications, 2012, 22(44):23310-23326.
SHI P, SU R, ZHU S, et al. Supported cobalt oxide on graphene oxide:Highly efficient catalysts for the removal of Orange Ⅱ from water[J]. Journal of Hazardous Materials, 2012, 229-230:331-339.
ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
TANG Y, DONG L, MAO S, et al. Enhanced photocatalytic removal of tetrabromobisphenol a by magnetic CoO@graphene nanocomposites under visible-light irradiation[J]. ACS Applied Energy Materials, 2018, 1(6):2698-2708.
LING S K, WANG S, PENG Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials, 2010, 178(1-3):385-389.
ANIPSITAKIS G P, DIONYSIOU D D. Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B:Environmental, 2004, 54(3):155-163.
BANDALA E R, PELÁEZ M A, DIONYSIOU D D, et al. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 186(2-3):357-363.
SHUKLA P R, WANG S, SUN H, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution[J]. Applied Catalysis B:Environmental, 2010, 100(3):529-534.
CHEN X, CHEN J, QIAO X, et al. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound[J]. Applied Catalysis B:Environmental, 2008, 80(1):116-121.
刘桂芳, 孙亚全, 陆洪宇, 等. 活化过硫酸盐技术的研究进展[J]. 工业水处理, 2012, 32(12):6-10. LIU G F, SUN Y Q, LU H Y, et al. Research progress in activated persulfate technology[J]. Industrial Water Treatment, 2012, 32(12):6-10(in Chinese).
JI Y, KONG D, LU J, et al. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A:Kinetics, reaction pathways, and formation of brominated by-products[J]. Journal of Hazardous Materials, 2016, 313:229-237.
HOWE P D, DOBSON S, MALCOLM H M, et al. 2,4,6-Tribromophenol and other simple brominated phenols[M]. Geneva:World Health Organization. 2005.
BAO Y, NIU J. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation:Kinetics, mechanism and influencing factors[J]. Chemosphere, 2015, 134:550-556.
顾雍, 孙贤波, 刘勇弟, 等. 活性污泥法降解三溴苯酚[J]. 华东理工大学学报:自然科学版, 2016, 42(5):664-669. GU Y, SUN X B, LIU Y D, et al. Biodegradation of tribromophenol in activated sludge system[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(5):664-669(in Chinese).