MERGLER D, ANDERSON H A, CHAN L H M, et al. Methylmercury exposure and health effects in humans:A worldwide concern[J]. Ambio, 2007, 36(1):3-11.
GRANDJEAN P, SATOH H, MURATA K, et al. Adverse effects of methylmercury:Environmental health research implications[J]. Environmental Health Perspectives, 2010, 118(8):1137-1145.
WIENER J G, KRABBENHOFT D P, HEINZ G H, et al. Ecotoxicology of mercury//Handbook of Ecotoxicology[C]. 2003.
CLARKON T W. The three modern faces of mercury.[J]. Environmental Health Perspectives, 2002, 110(suppl 1):11-23.
KRYSTEK P, RISEMA R. Mercury speciation in thawed out and refrozen fish samples by gas chromatography coupled to inductively coupled plasma mass spectrometry and atomic fluorescence spectroscopy[J]. Analytical & Bioanalytical Chemistry, 2005, 381(2):354-359.
HRENCHUK L E, BLANCHFIELD P J, PATERSON M J, et al. Dietary and waterborne mmercury accumulation by Yellow Perch:A field experiment[J]. Environmental Science & Technology, 2012, 46(1):509-516.
FENG X, LI P, QIU G, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environmental Science & Technology, 2008, 42(1):326-332.
ZHANG H, FENG X, Larssen T, et al. In inland china, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9):1183-1188.
MENG B, FENG X, QIU G, et al.The process of methylmercury accumulation in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2011, 45(7):2711-2717.
KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921.
COMPEAU G C, BARTHA R. Sulfate-reducing bacteria:Principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2):498-502.
MUNTHE J, BODALY R A, BRANFIREUN B A, et al. Recovery of mercury-contaminated fisheries[J]. AMBIO:A Journal of the Human Environment, 2007, 36(1):33-44.
HARRIS R C, RUDD J W M, AMYOT M, et al. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition[J]. Proceedings of the National Academy of Sciences, 2007, 104(42):16586-16591.
BENOIT J M, GILMOUR C C, MASON R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters[J]. Environmental Science & Technology, 1999, 33(6):951-957.
ANDREWS J C. Mercury speciation in the environment using X-ray absorption spectroscopy//Recent Developments in Mercury Science[M]. Springer Berlin Heidelberg, 2006.
BENOIT J M, MASON R P, GILMOUR C C. Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria[J]. Environmental Toxicology and Chemistry, 1999, 18(10):2138-2141.
SCHAEFER J K, MOREL F M M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens[J]. Nature Geoscience, 2009, 2(2):123-126.
SCHAEFER J K, ROCKS S S, ZHENG W, et al. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(21):8714-8719.
DYSSEN D, WEDBORG M. The sulphur-mercury(II) system in natural waters[J]. Water Air & Soil Pollution, 1991, 56(1):507-519.
SKYLLBERG U. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions:Illumination of controversies and implications for MeHg net production[J].Journal of Geophysical Research-Atmosphere, 2008, 12:113.
DEONARINE A, HSU-KIM H. Precipitation of mercuric sulfide nanoparticles in NOM-Containing water:Implications for the natural Environment[J]. Environmental Science & Technology, 2009, 43(7):2368-2373.
GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environmental Science & Technology, 2012, 46(5):2715-2723.
MOREAU J W, GIONFRIDDO C M, KRABBENHOFT D P, et al. The effect of natural organic matter on mercury methylation by desulfobulbus propionicus 1pr3[J]. Frontiers in Microbiology, 2015, 6:1389.
HELLAL J, GUEDRON S, HUGUET L, et al. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction:A column study to mimic reactive transfer in an anoxic aquifer[J]. Journal of Contaminant Hydrology, 2015, 180:56-68.
MORSE J W, LUTHER G W I. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19):3373-3378.
RAMALHOSA E,SEGADE S R, PEREIRA E, et al. Mercury cycling between the water column and surface sediments in a contaminated area[J]. Water Research, 2006, 40(15):2893-2900.
MERRITT K A, AMIRBAHMAN A. Mercury dynamics in sulfide-rich sediments:Geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA[J]. Geochimica et Cosmochimica Acta, 2007, 71(4):929-941.
PALACHE C, BERMAN H, FRONDEL C.Dana's system of mineralogy[M]. 7th edition. New York:John Wiley & Sons,1944.
ULRICH P D, SEDLAK D L. Impact of iron amendment on net methylmercury export from tidal wetland microcosms.[J]. Environmental Science & Technology, 2010, 44(19):7659-7665.
MEHROTRA A S, SEDLAK D L. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries[J]. Environmental Science and Technology, 2005, 39(8):2564-2570.
HAN S, OBRAZTSOVA A, PRETTO P, et al. Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries[J]. Marine Chemistry, 2008, 111(3-4):214-220.
LUTHER G W, ROZAN T F, TAILLEFERT M, et al. Chemical speciation drives hydrothermal vent ecology[J]. Nature, 2001, 410(6830):813-816.
ROZAN T F, LASSMAN M E, RIDGE D P, et al. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers[J]. Nature, 2000, 406(6798):879-882.
DEONARINE A, LAU B L T, AIKEN G R, et al. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles[J]. Environmental Science & Technology, 2011, 45(8):3217-3223.
LAU B L T, HSU-KIM H. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic Ligands[J]. Environmental Science & Technology, 2008, 42(19):7236-7241.
MULLAUGH K M. Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions.[J]. Journal of Environmental Monitoring, 2010, 12(4):890-897.
SKYLLBERG U, DROTT A. Competition between disordered iron sulfide and natural organic matter associated Tthiols for mercury(II)-An EXAFS study[J]. Environmental Science & Technology, 2010, 44(4):1254-1259.
JEONG H Y, KLAUE B, BLUM J D, et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)[J]. Environmental Science & Technology, 2007, 41(22):7699-7705.
GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles:Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7):3986-3994.
ZHANG T, KIM B, LEVARD, CLÉMENT, et al. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides[J]. Environmental Science & Technology, 2012, 46(13):6950-6958.
PHAM L T, MORRIS A, ZHANG T, et al. Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter:Structural properties, aggregation, and biotransformation[J]. Geochimica et Cosmochimica Acta, 2014, 133:204-215.
ZHANG T, KUCHARZYK K H, KIM B, et al. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides[J]. Environmental Science & Technology, 2014, 48(16):9133-9141.
JULIAN B, KAGJA H, THILO H, et al. Nanosized iron oxide colloids strongly enhance microbial iron reduction[J]. Applied & Environmental Microbiology, 2010, 76(1):184-189.
GLASAUER S, LANGLEY S, BEVERIDGE T J. Sorption of Fe (Hydr)oxides to the surface of shewanella putrefaciens:Cell-bound fine-grained minerals are not always formed de novo[J]. Applied and Environmental Microbiology, 2001, 67(12):5544-5550.
BONNEVILLE S, CAPPELLEN P V, BEHRENDS T. Microbial reduction of iron(Ⅲ) oxyhydroxides:Effects of mineral solubility and availability[J]. Chemical Geology, 2004, 212(3-4):255-268.
GRANTHAM M C, DOVE P M, DICHRISTINA T J. Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings[J]. Geochimica et Cosmochimica Acta, 1997, 61(21):4467-4477.
JONSSON S, SKYLLBERG U, NILSSON M B, et al. Mercury methylation rates for geochemically relevant Hg-II species in sediments[J]. Environmental Science & Technology, 2012, 46(21):11653-11659.