Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China:Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642:690-700
Huang Y, Wang L Y, Wang W J, et al. Current status of agricultural soil pollution by heavy metals in China:A meta-analysis[J]. Science of the Total Environment, 2019, 651:3034-3042
Zhu D W, Wei Y, Zhao Y H, et al. Heavy metal pollution and ecological risk assessment of the agriculture soil in Xunyang mining area, Shaanxi Province, northwestern China[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(2):178-184
Gebrekidan A, Weldegebriel Y, Hadera A, et al. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel River near Sheba Tannery, Tigray, Northern Ethiopia[J]. Ecotoxicology and Environmental Safety, 2013, 95:171-178
Islam M S, Proshad R, Asadul Haque M, et al. Assessment of heavy metals in foods around the industrial areas:Health hazard inference in Bangladesh[J]. Geocarto International, 2020, 35(3):280-295
Du Y, Hu X F, Wu X H, et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province, Central South China[J]. Environmental Monitoring and Assessment, 2013, 185(12):9843-9856
Zwolak A, Sarzyńska M, Szpyrka E, et al. Sources of soil pollution by heavy metals and their accumulation in vegetables:A review[J]. Water, Air, & Soil Pollution, 2019, 230(7):1-9
Hu B F, Shao S, Ni H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266:114961
Huang J H, Peng S Y, Mao X M, et al. Source apportionment and spatial and quantitative ecological risk assessment of heavy metals in soils from a typical Chinese agricultural county[J]. Process Safety and Environmental Protection, 2019, 126:339-347
Bakhat H F, Zia Z, Abbas S, et al. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems[J]. Groundwater for Sustainable Development, 2019, 9:100263
Zhang X W, Yan Y, Wadood S A, et al. Source apportionment of cadmium pollution in agricultural soil based on cadmium isotope ratio analysis[J]. Applied Geochemistry, 2020, 123:104776
Li X Y, Zhang J R, Ma J, et al. Status of chromium accumulation in agricultural soils across China (1989-2016)[J]. Chemosphere, 2020, 256:127036
熊琼仙, 李正龙, 熊敏. 浅谈土壤中Pb2+的污染及修复研究现状[J]. 广州化工, 2019, 47(17):135-137 Xiong Q X, Li Z L, Xiong M. A brief discussion on research status of Pb2+ pollution and remediation technology in soil[J]. Guangzhou Chemical Industry, 2019, 47(17):135-137(in Chinese)
Liu S J, Wang X D, Guo G L, et al. Status and environmental management of soil mercury pollution in China:A review[J]. Journal of Environmental Management, 2021, 277:111442
王慧. 重金属Cu、Zn和Cd胁迫对小麦生长和土壤理化性质的影响[D]. 青岛:青岛农业大学, 2017:50-53 Wang H. Effects of heavy metal Cu, Zn and Cd stress on wheat growth and soil physical and chemical properties[D]. Qingdao:Qingdao Agricultural University, 2017:50 -53(in Chinese)
翁娜, 韩潇. 重金属污染对土壤酶活性影响的研究进展[J]. 农业开发与装备, 2016(10):34-35, 39
薛鲁燕, 张海峰, 蔡葵, 等. 论农田土壤重金属污染的危害及修复技术[J]. 农业与技术, 2020, 40(13):41-42
Kotecha M, Medhavi, Chaudhary S, et al. Metals, Crops and Agricultural Productivity:Impact of Metals on Crop Loss[M]//Plant-Metal Interactions. Cham:Springer International Publishing, 2019:191-216
吴金涛, 陈霞. 重金属镉对农产品的污染及其防治措施[J]. 农家参谋, 2020(15):226, 228
李玘. 土壤中重金属污染的原因、危害及解决措施[J]. 科技与创新, 2019(12):92-93
张倩, 杜海云, 孙家正, 等. 我国果园土壤和果品中砷污染现状及控制措施建议[J]. 山东农业科学, 2015, 47(7):131-135 Zhang Q, Du H Y, Sun J Z, et al. Pollution status and control measures of arsenic in fruits and orchard soil in China[J]. Shandong Agricultural Sciences, 2015, 47(7):131-135(in Chinese)
王瑶瑶, 郝毅, 张洪, 等. 珠三角地区大米中的镉砷污染现状及治理措施[J]. 中国农学通报, 2019, 35(12):63-72 Wang Y Y, Hao Y, Zhang H, et al. Cadmium and arsenic pollution in rice in the Pearl River Delta and the countermeasures[J]. Chinese Agricultural Science Bulletin, 2019, 35(12):63-72(in Chinese)
王晓男. 土壤重金属污染防治措施研究进展综述[J]. 安徽农业科学, 2014, 42(29):10070-10071 Wang X N. Review on research advances of measures of soil heavy metal pollution control[J]. Journal of Anhui Agricultural Sciences, 2014, 42(29):10070-10071(in Chinese)
冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 21(Z1):436-457 Feng X B, Qiu G L, Fu X W, et al. Mercury pollution in the environment[J]. Progress in Chemistry, 2009, 21(Z1):436-457(in Chinese)
谢世强. 大气中不同形态汞的迁移转化[J]. 中国化工贸易, 2017, 9(14):243
中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2020-12-15]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
Xie S W, Yang F, Feng H X, et al. Assessment of potential heavy metal contamination in the peri-urban agricultural soils of 31 provincial capital cities in China[J]. Environmental Management, 2019, 64(3):366-380
Wang G Y, Zhang S R, Xiao L Y, et al. Heavy metals in soils from a typical industrial area in Sichuan, China:Spatial distribution, source identification, and ecological risk assessment[J]. Environmental Science and Pollution Research, 2017, 24(20):16618-16630
葛晓颖, 欧阳竹, 杨林生, 等. 环渤海地区土壤重金属富集状况及来源分析[J]. 环境科学学报, 2019, 39(6):1979-1988 Ge X Y, Ouyang Z, Yang L S, et al. Concentration, risk assessment and sources of heavy metals in soil around Bohai Rim[J]. Acta Scientiae Circumstantiae, 2019, 39(6):1979-1988(in Chinese)
Pan L B, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research International, 2018, 25(2):1055-1069
赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4):452-458 Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4):452-458(in Chinese)
赵其国, 黄国勤, 钱海燕. 生态农业与食品安全[J]. 土壤学报, 2007, 44(6):1127-1134 Zhao Q G, Huang G Q, Qian H Y. Ecological agriculture and food safety[J]. Acta Pedologica Sinica, 2007, 44(6):1127-1134(in Chinese)
李思民, 王豪吉, 朱曦, 等. 土壤pH和有机质含量对重金属可利用性的影响[J]. 云南师范大学学报:自然科学版, 2021, 41(1):49-55 Li S M, Wang H J, Zhu X, et al. Effects of soil pH and organic matter on the content of bioavailable heavy metals[J]. Journal of Yunnan Normal University:Natural Sciences Edition, 2021, 41(1):49-55(in Chinese)
Wang S Y, Wu W Y, Liu F, et al. Accumulation of heavy metals in soil-crop systems:A review for wheat and corn[J]. Environmental Science and Pollution Research, 2017, 24(18):15209-15225
Peng J Y, Li F X, Zhang J Q, et al. Comprehensive assessment of heavy metals pollution of farmland soil and crops in Jilin Province[J]. Environmental Geochemistry and Health, 2020, 42(12):4369-4383
Tang L, Deng S H, Tan D, et al. Heavy metal distribution, translocation, and human health risk assessment in the soil-rice system around Dongting Lake area, China[J]. Environmental Science and Pollution Research, 2019, 26(17):17655-17665
中华人民共和国国家卫生和计划生育委员会, 中华人民共和国国家食品药品监督管理总局. 食品安全国家标准食品中污染物限量:GB 2762-2017[J]. 中国食品卫生杂志, 2018, 30(3):329-340
Ye X Z, Xiao W D, Zhang Y Z, et al. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang Province, China[J]. Environmental Monitoring and Assessment, 2015, 187(6):1-9
Zhong T Y, Xue D W, Zhao L M, et al. Concentration of heavy metals in vegetables and potential health risk assessment in China[J]. Environmental Geochemistry and Health, 2018, 40(1):313-322
Kaur M, Kumar A, Mehra R, et al. Human health risk assessment from exposure of heavy metals in soil samples of Jammu District of Jammu and Kashmir, India[J]. Arabian Journal of Geosciences, 2018, 11(15):1-15
Zhuo H M, Fu S Z, Liu H, et al. Soil heavy metal contamination and health risk assessment associated with development zones in Shandong, China[J]. Environmental Science and Pollution Research, 2019, 26(29):30016-30028
Wu J, Lu J, Li L M, et al. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau[J]. Chemosphere, 2018, 201:234-242
Mamat A, Zhang Z Y, Mamat Z, et al. Pollution assessment and health risk evaluation of eight (metalloid) heavy metals in farmland soil of 146 cities in China[J]. Environmental Geochemistry and Health, 2020, 42(11):3949-3963
Karimyan K, Alimohammadi M, Maleki A, et al. Human health and ecological risk assessment of heavy metal(loid)s in agricultural soils of rural areas:A case study in Kurdistan Province, Iran[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2):469-481
United States Environmental Protection Agency (US EPA). Risk assessment guidance for Superfund. Volume 1. Human health evaluation manual. Part A. (Interim final). EPA/540/189/002; PB90-155581[R]. Washington DC:Office of Solid Waste and Emergency Response, US EPA, 1989
United States Environmental Protection Agency (US EPA). Guidance for performing aggregate exposure and risk assessments[R]. Washington DC:Office of Pesticide Programs, US EPA, 1999
United States Environmental Protection Agency (US EPA). Exposure factors handbook EPA/600/P-95/002 FA (Update to exposure factors handbook (EPA/600/8-89/043))[R]. Washington DC:US EPA, 1997
Pan L B, Ma J, Hu Y, et al. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical County in Shanxi Province, China[J]. Environmental Science and Pollution Research, 2016, 23(19):19330-19340
Wang Z H, Qin H Y, Liu X Y. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China[J]. Environmental Science and Pollution Research, 2019, 26(6):5904-5912
Yang W X, Wang D, Wang M K, et al. Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China[J]. Environmental Monitoring and Assessment, 2019, 191(7):1-12
Yu R A, He L F, Cai R D, et al. Heavy metal pollution and health risk in China[J]. Global Health Journal, 2017, 1(1):47-55
Zeng S Y, Ma J, Yang Y J, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687:642-653
Sun G X, van de Wiele T, Alava P, et al. Arsenic in cooked rice:Effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract[J]. Environmental Pollution, 2012, 162:241-246
Signes-Pastor A J, Al-Rmalli S W, Jenkins R O, et al. Arsenic bioaccessibility in cooked rice as affected by arsenic in cooking water[J]. Journal of Food Science, 2012, 77(11):T201-T206
Zhuang P, Zhang C S, Li Y W, et al. Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test[J]. Food Chemistry, 2016, 213:206-214
Liao W, Wang G, Li K M, et al. Effect of cooking on speciation and in vitro bioaccessibility of Hg and as from rice, using ordinary and pressure cookers[J]. Biological Trace Element Research, 2019, 187(1):329-339
Yin N Y, Zhang Z N, Cai X L, et al. In vitro method to assess soil arsenic metabolism by human gut microbiota:Arsenic speciation and distribution[J]. Environmental Science & Technology, 2015, 49(17):10675-10681
Yin N Y, Wang P F, Li Y, et al. Arsenic in rice bran products:In vitro oral bioaccessibility, arsenic transformation by human gut microbiota, and human health risk assessment[J]. Journal of Agricultural and Food Chemistry, 2019, 67(17):4987-4994
Girard C, Charette T, Leclerc M, et al. Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans[J]. Science of the Total Environment, 2018, 616-617:863-874
Torres-Escribano S, Ruiz A, Barrios L, et al. Influence of mercury bioaccessibility on exposure assessment associated with consumption of cooked predatory fish in Spain[J]. Journal of the Science of Food and Agriculture, 2011, 91(6):981-986
Lin H F, Santa-Rios A, Barst B D, et al. Occurrence and bioaccessibility of mercury in commercial rice samples in Montreal (Canada)[J]. Food and Chemical Toxicology, 2019, 126:72-78
Liao W, Wang G, Zhao W B, et al. Change in mercury speciation in seafood after cooking and gastrointestinal digestion[J]. Journal of Hazardous Materials, 2019, 375:130-137
Jadán Piedra C, Sánchez V, Vélez D, et al. Reduction of mercury bioaccessibility using dietary strategies[J]. LWT-Food Science and Technology, 2016, 71:10-16
Wang L H, Yin X X, Gao S L, et al. In vitro oral bioaccessibility investigation and human health risk assessment of heavy metals in wheat grains grown near the mines in North China[J]. Chemosphere, 2020, 252:126522
Medlin A E. An in vitro method for estimating the relative bioavailability of lead in humans[D]. Colorado:University of Colorado, 1997:243-249
Ruby M V, Davis A, Link T E, et al. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead[J]. Environmental Science & Technology, 1993, 27(13):2870-2877
Oomen A G, Hack A, Minekus M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental Science & Technology, 2002, 36(15):3326-3334
Rodriguez R R, Basta N T, Casteel S W, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science & Technology, 1999, 33(4):642-649
Hack A, Selenka F. Mobilization of PAH and PCB from contaminated soil using a digestive tract model[J]. Toxicology Letters, 1996, 88(1-3):199-210
Minekus M, Smeets-Peeters M, Bernalier A, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products[J]. Applied Microbiology and Biotechnology, 1999, 53(1):108-114
van de Wiele T R, Verstraete W, Siciliano S D. Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract[J]. Journal of Environmental Quality, 2004, 33(4):1343
Liu L, Wang Q, Wu X Y, et al. Vancomycin exposure caused opportunistic pathogens bloom in intestinal microbiome by simulator of the human intestinal microbial ecosystem (SHIME)[J]. Environmental Pollution, 2020, 265:114399
Wang P F, Yin N Y, Cai X L, et al. Variability of chromium bioaccessibility and speciation in vegetables:The influence of in vitro methods, gut microbiota and vegetable species[J]. Food Chemistry, 2019, 277:347-352
Xu L Q, Yu C, Mao Y F, et al. Can flow-electrode capacitive deionization become a new in situ soil remediation technology for heavy metal removal?[J]. Journal of Hazardous Materials, 2021, 402:123568
Zhu Y, Xu F, Liu Q, et al. Nanomaterials and plants:Positive effects, toxicity and the remediation of metal and metalloid pollution in soil[J]. Science of the Total Environment, 2019, 662:414-421
Li X F. Technical solutions for the safe utilization of heavy metal-contaminated farmland in China:A critical review[J]. Land Degradation & Development, 2019, 30(15):1773-1784
Wu C, Dun Y, Zhang Z J, et al. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2020, 190:110091
Li N, Feng A X, Liu N, et al. Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice[J]. Environmental Science and Pollution Research, 2020, 27(16):20370-20379