Qin G W, Niu Z D, Yu J D, et al. Soil heavy metal pollution and food safety in China:Effects, sources and removing technology[J]. Chemosphere, 2021, 267:129205
|
Tang X, Li Q, Wu M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181:646-662
|
国家环境保护总局. 土壤环境质量农用地土壤污染风险管控标准:GB 15618-2018[S]. 北京:中国环境科学出版社, 2018
|
Ruby M V, Lowney Y W. Selective soil particle adherence to hands:Implications for understanding oral exposure to soil contaminants[J]. Environmental Science & Technology, 2012, 46(23):12759-12771
|
Wang K, Ma J Y, Li M Y, et al. Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells:Oxidative stress, cell cycle arrest and apoptosis[J]. Science of the Total Environment, 2021, 756:143951
|
Cao P Q, Fujimori T, Juhasz A, et al. Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie, Accra, Ghana[J]. Chemosphere, 2020, 240:124909
|
Han Y, Tang Z W, Sun J Z, et al. Heavy metals in soil contaminated through e-waste processing activities in a recycling area:Implications for risk management[J]. Process Safety and Environmental Protection, 2019, 125:189-196
|
马娇阳, 田稳, 王坤, 等. 污染场地土壤重金属的生物可给性及毒性研究[J]. 中国环境科学, 2021, 41(10):4885-4893
Ma J Y, Tian W, Wang K, et al. Bioaccessibility and their toxic effects of heavy metal in field soils from an electronic disassembly plant[J]. China Environmental Science, 2021, 41(10):4885-4893(in Chinese)
|
Li H B, Li J, Li S W, et al. Application of Oral Bioavailability to Remediation of Contaminated Soils:Method Development for Bioaccessible As, Pb, and Cd[M]//Twenty Years of Research and Development on Soil Pollution and Remediation in China. Singapore:Springer Singapore, 2018:189-216
|
Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94:600-606
|
Kang Y, Pan W J, Liang S Y, et al. Assessment of relative bioavailability of heavy metals in soil using in vivo mouse model and its implication for risk assessment compared with bioaccessibility using in vitro assay[J]. Environmental Geochemistry and Health, 2016, 38(5):1183-1191
|
唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J]. 环境工程学报, 2019, 13(8):1775-1790
Tang W Z, Sun L, Shan B Q. Research progress of bioavailability and bioaccessibility of heavy metals in soil or sediment[J]. Chinese Journal of Environmental Engineering, 2019, 13(8):1775-1790(in Chinese)
|
Ng J C, Juhasz A, Smith E, et al. Assessing the bioavailability and bioaccessibility of metals and metalloids[J]. Environmental Science and Pollution Research, 2015, 22(12):8802-8825
|
Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19):4016-4030
|
Li H B, Li M Y, Zhao D, et al. Arsenic, lead, and cadmium bioaccessibility in contaminated soils:Measurements and validations[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13):1303-1338
|
Zia M H, Codling E E, Scheckel K G, et al. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils:A review[J]. Environmental Pollution, 2011, 159(10):2320-2327
|
Fu J, Cui Y S. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables:The influence of cooking and additives[J]. Food and Chemical Toxicology, 2013, 59:215-221
|
Aziz R, Rafiq M T, Li T Q, et al. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(13):3599-3608
|
Akkajit P, Tongcumpou C. Fractionation of metals in cadmium contaminated soil:Relation and effect on bioavailable cadmium[J]. Geoderma, 2010, 156(3-4):126-132
|
Zhang R R, Zhang Q, Ma L Q, et al. Effects of food constituents on absorption and bioaccessibility of dietary synthetic phenolic antioxidant by Caco-2 cells[J]. Journal of Agricultural and Food Chemistry, 2020, 68(16):4670-4677
|
王维薇, 林清. 国内外土壤镉污染及其修复技术的现状与展望[J]. 绿色科技, 2017(4):90-93, 102
Wang W W, Lin Q. Present situation and prospect of soil cadmium pollution and remediation technology at home and abroad[J]. Journal of Green Science and Technology, 2017(4):90-93, 102(in Chinese)
|
陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10):2219-2238
Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10):2219-2238(in Chinese)
|
Duan Q N, Lee J, Liu Y S, et al. Distribution of heavy metal pollution in surface soil samples in China:A graphical review[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(3):303-309
|
United States Environmental Protection Agency (US EPA). EPA/600/R-09/052F Exposure Factors Handbook (Final Edition)[S]. Washington DC:US EPA, 2011
|
中华人民共和国环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京:中国环境科学出版社, 2013:664-669 Ministry of Environmental Protection of the People's Republic of China. Exposure Factors Handbook of Chinese Population[M]. Beijing:China Environmental Science Press, 2013:664
-669(in Chinese)
|
国家环境保护总局. 污染场地风险评估技术导则:HJ 25.3-2014[S]. 北京:中国环境科学出版社, 2014
|
李梦莹, 王成尘, 毕珏, 等. 食品中重金属的人体健康风险评估方法研究进展[J]. 福建农林大学学报:自然科学版, 2021, 50(1):1-9
Li M Y, Wang C C, Bi J, et al. Human health risk assessment of heavy metals in food:A review[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2021, 50(1):1-9(in Chinese)
|
Zhu X, Li M Y, Chen X Q, et al. As, Cd, and Pb relative bioavailability in contaminated soils:Coupling mouse bioassay with UBM assay[J]. Environment International, 2019, 130:104875
|
Li H B, Li M Y, Zhao D, et al. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays:A review[J]. Environmental Science & Technology, 2019, 53(18):10545-10559
|
Bradham K D, Diamond G L, Burgess M, et al. In vivo and in vitro methods for evaluating soil arsenic bioavailability:Relevant to human health risk assessment[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2018, 21(2):83-114
|
Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J]. Environmental Science & Technology, 2012, 46(11):6252-6260
|
Schroder J L, Basta N T, Si J T, et al. In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil[J]. Environmental Science & Technology, 2003, 37(7):1365-1370
|
Hugenholtz F, Vos W M. Mouse models for human intestinal microbiota research:A critical evaluation[J]. Cellular and Molecular Life Sciences, 2018, 75(1):149-160
|
Roberts S M, Munson J W, Lowney Y W, et al. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey[J]. Toxicological Sciences, 2007, 95(1):281-288
|
Yan K H, Dong Z M, Wijayawardena M A A, et al. Measurement of soil lead bioavailability and influence of soil types and properties:A review[J]. Chemosphere, 2017, 184:27-42
|
Juhasz A L, Weber J, Naidu R, et al. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies[J]. Environmental Science & Technology, 2010, 44(13):5240-5247
|
Li H B, Chen X Q, Wang J Y, et al. Antagonistic interactions between arsenic, lead, and cadmium in the mouse gastrointestinal tract and their influences on metal relative bioavailability in contaminated soils[J]. Environmental Science & Technology, 2019, 53(24):14264-14272
|
Sarkar A, Ravindran G. A brief review on the effect of cadmium toxicity:From cellular to organ level[J]. International Journal of Bio-Technology and Research, 2013, 3(1):17-36
|
Ruby M V, Davis A, Schoof R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2):422-430
|
Deutsches Institut für Normung e.V. (DIN). DIN 19738, Soil Quality-Bioaccessibility of Organic and Inorganic Pollutants from Contaminated Soil Material[S]. Berlin:DIN, 2017
|
Han Q, Wang M S, Cao J L, et al. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China[J]. Ecotoxicology and Environmental Safety, 2020, 191:110157
|
Schroder J L, Basta N T, Casteel S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004, 33(2):513-521
|
Cui X Y, Xiang P, He R W, et al. Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices[J]. Chemosphere, 2016, 150:378-389
|
Calatayud M, Vázquez M, Devesa V, et al. In vitro study of intestinal transport of inorganic and methylated arsenic species by Caco-2/HT29-MTX cocultures[J]. Chemical Research in Toxicology, 2012, 25(12):2654-2662
|
Aziz R, Rafiq M T, Yang J, et al. Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702)[J]. BioMed Research International, 2014, 2014:839538
|
王振洲, 崔岩山, 张震南, 等. Caco-2细胞模型评估金属人体生物有效性的研究进展[J]. 生态毒理学报, 2014, 9(6):1027-1034
Wang Z Z, Cui Y S, Zhang Z N, et al. Evaluation on the human bioavailability of metals using Caco-2 cell model:A review[J]. Asian Journal of Ecotoxicology, 2014, 9(6):1027-1034(in Chinese)
|
Boim A G F, Wragg J, Canniatti-Brazaca S G, et al. Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices[J]. Environmental Geochemistry and Health, 2020, 42(2):601-615
|
Pan W J, Kang Y, Zeng L X, et al. Comparison of in vitro digestion model with in vivo relative bioavailability of BDE-209 in indoor dust and combination of in vitro digestion/Caco-2 cell model to estimate the daily intake of BDE-209 via indoor dust[J]. Environmental Pollution, 2016, 218:497-504
|
Leonard F, Collnot E M, Lehr C M. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro[J]. Molecular Pharmaceutics, 2010, 7(6):2103-2119
|
Mahler G J, Esch M B, Tako E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4):264-271
|
Lv Q, He Q, Wu Y, et al. Investigating the bioaccessibility and bioavailability of cadmium in a cooked rice food matrix by using an 11-day rapid Caco-2/HT-29 co-culture cell model combined with an in vitro digestion model[J]. Biological Trace Element Research, 2019, 190(2):336-348
|
Aziz R, Rafiq M T, He Z L, et al. In vitro assessment of cadmium bioavailability in Chinese cabbage grown on different soils and its toxic effects on human health[J]. BioMed Research International, 2015, 2015:285351
|
Breton J, Clère K, Daniel C, et al. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine[J]. Archives of Toxicology, 2013, 87(10):1787-1795
|
He X W, Qi Z D, Hou H, et al. Structural and functional alterations of gut microbiome in mice induced by chronic cadmium exposure[J]. Chemosphere, 2020, 246:125747
|
Bashir M, Meddings J, Alshaikh A, et al. Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2019, 316(1):G1-G14
|
Ba Q, Li M, Chen P Z, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice[J]. Environmental Health Perspectives, 2017, 125(3):437-446
|
Li X S, Li H W, Cai D B, et al. Chronic oral exposure to cadmium causes liver inflammation by NLRP3 inflammasome activation in pubertal mice[J]. Food and Chemical Toxicology, 2021, 148:111944
|
王漫莉, 罗启仕, 冉雨灵, 等. 受污染土壤中重金属的蚯蚓生物有效性评估研究进展[J]. 生态与农村环境学报, 2019, 35(9):1097-1102
Wang M L, Luo Q S, Ran Y L, et al. Research advances in the assessment of heavy metal bioavailability to earthworms in contaminated soils[J]. Journal of Ecology and Rural Environment, 2019, 35(9):1097-1102(in Chinese)
|
杨洁, 瞿攀, 王金生, 等. 土壤中重金属的生物有效性分析方法及其影响因素综述[J]. 环境污染与防治, 2017, 39(2):217-223
Yang J, Qu P, Wang J S, et al. Review on analysis methods of bioavailability of heavy metals in soil and its influence factors[J]. Environmental Pollution & Control, 2017, 39(2):217-223(in Chinese)
|
Shahid M, Dumat C, Khalid S, et al. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System[M]. New York:Springer, 2016:73-137
|
毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10):1669-1676
Mao L C, Ye H. Influence of redox potential on heavy metal behavior in soils:A review[J]. Research of Environmental Sciences, 2018, 31(10):1669-1676(in Chinese)
|
Tian H Q, Wang Y Z, Xie J F, et al. Effects of soil properties and land use types on the bioaccessibility of Cd, Pb, Cr, and Cu in Dongguan City, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1):64-70
|
Ollson C J, Smith E, Herde P, et al. Influence of sample matrix on the bioavailability of arsenic, cadmium and lead during co-contaminant exposure[J]. Science of the Total Environment, 2017, 595:660-665
|
Ollson C J, Smith E, Herde P, et al. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead[J]. Chemosphere, 2017, 168:658-666
|
Zou R, Wang L, Li Y C, et al. Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency[J]. Environmental Pollution, 2020, 256:113410
|
Hamel S C, Buckley B, Lioy P J. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid[J]. Environmental Science & Technology, 1998, 32(3):358-362
|
Lu M J, Li G Y, Yang Y, et al. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment[J]. Science of the Total Environment, 2021, 752:142001
|
Oomen A G, Rompelberg C J M, Kamp E V D, et al. Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(2):183-188
|
Sun D X, Lennernas H, Welage L S, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12, 000 gene sequences tags and correlation with permeability of 26 drugs[J]. Pharmaceutical Research, 2002, 19(10):1400-1416
|
Balimane P V, Chong S. Cell culture-based models for intestinal permeability:A critique[J]. Drug Discovery Today, 2005, 10(5):335-343
|
Sun S, Zhou X F, Li Y W, et al. Use of dietary components to reduce the bioaccessibility and bioavailability of cadmium in rice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(14):4166-4175
|