严清, 高旭, 彭绪亚. 污水处理系统中非甾体抗炎镇痛药(NSAIDs)去除的研究[J]. 水处理技术,2012, 38:13-19. YAN Q, GAO X, PENG X. Research and progress in removal of nonsteroidal anti-inflammatory drugs (NSAIDS) in wastewater treatment plants[J]. Technology of Water Treatment, 2012 , 38:13-19(in Chinese).
SILVA F A E, CABAN M, KHOLANY M, et al. Recovery of nonsteroidal anti-inflammatory drugs from wastes using ionic-liquid-based three-phase partitioning systems[J]. Acs Sustainable Chemistry & Engineering, 2018,6,4:4574-4585.
EKMAN E, The non-selective anti-inflammatory, Naproxen at an over-the-counter dose during arthroscopic surgery[J]. Journal of Pain, 2012, 13:S85-S85.
NAKADA N, SHINOHARA H, MURATA A, et al. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant[J]. Water Research, 2007, 41:4373-4382.
SANTOS J L, APARICIO I, ALONSO E, Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study:Seville City (Spain)[J]. Environment International, 2007,33:596-601.
温智皓, 段艳平, 孟祥周, 等. 城市污水处理厂及其受纳水体中5种典型PPCPs的赋存特征和生态风险[J]. 环境科学, 2013, 34:927-932. WEN Z H,DUAN Y P,MENG X Z, et al. Occurrence and risk assessment of five selected PPCPs in municipal[J]. Environmental Science, 2013 , 34:927-932(in Chinese).
GULKOWSKA A, LEUNG H W, SO M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42:395-403.
DOMÍNGUEZ J R, GONZÁLEZ T, PALO P, et al. Removal of common pharmaceuticals present in surface waters by Amberlite XAD-7 acrylic-ester-resin:Influence of pH and presence of other drugs[J]. Desalination, 2011, 269:231-238.
HASAN Z, JEON J, JHUNG S H, Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks[J]. Journal of Hazardous Materials, 2012, 209-210, 151-157.
毛晶璘, 萘普生和斑马鱼胚胎发育毒性及其臭氧降解特性研究[D]. 杭州:浙江工业大学, 2013. MAO J L. Study on developmental toxicity in zebrafish embryos and characteristics of ozonation of naproxen[D]. Hangzhou:Zhejiang University of Technology, 2013(in Chinese).
林龙利, 刘国光, 杨敏建, 等. 负载型TiO2纳米管对水体中萘普生光催化作用[J]. 环境工程学报, 2016, 10:2201-2206. LIN L L, LIU G G, YANG J M, et al. Photocatalysis of naproxen in water over TiO2 nanotube supported on polyurethane membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10:2201-2206(in Chinese).
徐超, 毛晶璘, 冯继勤, 臭氧氧化萘普生的机理及其动力学研究[J]. 浙江工业大学学报, 2014, 42:31-36. XU C, MAO J L, FENG J Q,Mechanism and kinetics of the ozonation of naproxen[J]. Journal of Zhejiang University of Technology, 2014 , 42:31-36(in Chinese).
马杜娟, 刘国光, 吕文英, 等. 水中萘普生的紫外光降解机制及其产物毒性研究[J]. 环境科学, 2013, 34:1782-1789. MA D J, LIU G G, LV W Y, et al. Photodegradation of Naproxen in aqueous systems by UV irradiation:mechanism and toxicity of photolysis products[J]. Environmental Science, 2013 , 34:1782-1789(in Chinese).
兰瑞家, 高级氧化法处理水中的有机污染物[D]. 保定:河北大学, 2013. LAN R J. Degradation of organic pollutants from aqueous solution by advanced oxidation processes[D]. Baoding:Hebei University, 2013(in Chinese).
CARRAWAY E R, HOFFMAN A J, HOFFMANN M R, Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids[J]. Environmental Science Technology, 1994, 28:786-793.
LIU B, RONG-RONG F U, GAO S M, et al. Preparation of Ti-(3+) Self-Doped TiO2(A)/TiO2(R)/In2O3 Nanoheterojunctions with Enhanced Visible-Light-Driven Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, 2016, 32:223-232.
CHEN P, WANG F L, CHEN Z F, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst:The significant roles of reactive oxygen species[J]. Applied Catalysis B Environmental, 2017, 204:250-259.
LIU Q, GUO Y, CHEN Z, et al. Constructing a novel ternary Fe(Ⅲ)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect[J]. Applied Catalysis B Environmental, 2016, 183:231-241.
WANG F L, WANG Y F, FENG Y P, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied Catalysis B Environmental, 2017, 221:510-520.
张聪, 米屹东, 马东, 等. CeO2/g-C3N4光催化剂的制备及性能[J]. 环境化学, 2017, 36(1):147-152. ZHANG C, MI Q D, MA D, et al. Preparation and photocatalytic performance of CeO2/g-C3N4 photocatalysts[J]. Environmental Chemistry, 2017, 36(1):147-152(in Chinese).
WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8:76-80.
QIN J, HUO J, ZHANG P, et al. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation[J]. Nanoscale, 2016, 8:2249-2259.
PATNAIK S, MARTHA S, MADRAS G, et al. Effect of Sulfate Pre-treatment to improve deposition of Au-nanoparticles in sulphated g-C3N4 photocatalyst towards visible light induced water reduction reaction[J]. Physical Chemistry Chemical Physics, 2016, 18:28502-28514.
YAN S C, LI Z S, ZOU Z G, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir,2010, 26:3894-3901.
ZHOU Y, ZHANG L, LIU J, et al. Brand new P-doped g-C3N4:Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light[J]. Journal of Materials Chemistry A, 2015, 3:3862-3867.
CHITHAMBARARAJ A, SANJINI N S, VELMATHI S, et al. Preparation of h-MoO3 and α-MoO3 nanocrystals:comparative study on photocatalytic degradation of methylene blue under visible light irradiation[J]. Physical Chemistry Chemical Physics, 2013, 15:14761-14769.
宋娟, 宋继梅, 胡媛, 等. MoO3掺杂WO3催化剂的制备及其光催化性能[J]. 环境化学, 2008, 27(6):721-725. SONG J, SONG J M, HU Y, et al. Study of preparation and photocatalytic activity of WO3 doped with MoO3[J]. Environmental Chemistry, 2008, 27(6):721-725(in Chinese).
HUANG L Y, XU H, ZHANG R X, et al. Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity[J]. Applied Surface Science,2013, 283:25-32.
HE Y M, ZHANG L H, WANG X, et al. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation[J]. Rsc Advances, 2014, 4:13610-13619.
LI W, TIAN Y, LI H, et al. Novel BiOCl/TiO2 hierarchical composites:Synthesis, characterization and application on photocatalysis[J]. Applied Catalysis A General, 2016, 516:81-89.
WANG B, DI J, ZHANG P, et al. Ionic liquid-induced strategy for porous Perovskite-like PbBiO2 Br photocatalysts with enhanced photocatalytic activity and mechanism insight[J]. Applied Catalysis B Environmental, 2017, 206:127-135.
WANG F L, CHEN P, FENG Y P, et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin[J]. Applied Catalysis B Environmental, 2017, 207:103-113.
CHIANG T H, YEH H C, The Synthesis of α-MoO3 by Ethylene Glycol[J]. Materials, 2013, 6:4609-4625.
SHIRAISHI Y, KANAZAWA S, SUGANO Y, et al. Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light[J]. Acs Catalysis, 2016, 4:774-780.
DHANASANKAR M, PURUSHOTHAMAN K K, MURALIDHARAN G, Optical, structural and electrochromic studies of molybdenum oxide thin films with nanorod structure[J]. Solid State Sciences, 2010, 12:246-251.
RAGHAVA R K, GOMES V G, HASSAN M, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis[J]. Materials Research Express, 2014, 1:015012.
MENDRET J, HATAT-FRAILE M, RIVALLIN M, et al. Influence of solution pH on the performance of photocatalytic membranes during dead-end filtration[J]. Separation & Purification Technology, 2013, 118:406-414.
黎展毅, 刘国光, 金小愉, 等. 水体中N、Fe的存在形态对萘普生光解行为的影响[J]. 环境科学学报, 2017, 37:2623-2631. LI Z Y, LIU G G, JIN X Y, et al. Naproxen photodegradation under UV radiation in aqueous solution:Effect of different forms of nitrogen and iron[J]. Acta Scientiae Circumstantiae, 2017 , 37:2623-2631(in Chinese).
CHANG C, FU Y, HU M, et al. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation[J]. Applied Catalysis B Environmental, 2013, 142:553-560.
杨师棣. 论醚键的酸催化断裂反应[J]. 渭南师专学报:自然科学版,1999, 14(2):35-37. YANG S L. On acid catalytic fracture reaction of ether bond[J]. Journal of Weinan Teachers College:Nature Science, 1999, 14(2):35-37(in Chinese).
XIAO P Y, LOU J F, ZHANG H X, et al. Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets:synergistic effect and mechanism insight[J]. Catalysis Science & Technology, 2018, 8:201-209.
张钱新, 陈平, 王枫亮, 等. g-C3N4在可见光下协同PDS降解磺胺二甲嘧啶的机制研究[J]. 环境科学学报, 2017, 37(10):3772-3779. ZHANG Q X, CHEN P, WANG F L, et al. Photocatalytic degradation mechanism of sulfamethazine using PDS/g-C3N4 under visible light irradiation[J]. Acta Scientiae Circumstantiae, 2017, 37(10):3772-3779(in Chinese).
XIA J X, DI J, LI H T, et al. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X=Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis[J]. Applied Catalysis B Environmental, 2016, 181:260-269.