Khin M M, Nair A S, Babu V J, et al. A review on nanomaterials for environmental remediation[J]. Energy & Environmental Science, 2012, 5(8):8075-8109
Madima N, Mishra S B, Inamuddin I, et al. Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater[J]. Environmental Chemistry Letters, 2020, 18(4):1169-1191
Xue L L, Lu B Z, Wu Z S, et al. Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants[J]. Chemical Engineering Journal, 2014, 243:494-499
Burchardt A D, Carvalho R N, Valente A, et al. Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp.[J]. Environmental Science & Technology, 2012, 46(20):11336-11344
Iswarya V, Manivannan J, De A, et al. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels[J]. Environmental Science and Pollution Research, 2016, 23(5):4844-4858
李芳芳, 潘容, 张偲, 等. 纳米铜粉对中肋骨条藻的毒性效应[J]. 中国环境科学, 2015, 35(9):2874-2880 Li F F, Pan R, Zhang C, et al. Inhibition effects of copper nanoparticles on the growth of Skeletonema costatum[J]. China Environmental Science, 2015, 35(9):2874-2880(in Chinese)
丛艺, 穆景利, 王菊英. 纳米材料在水环境中的行为及其对水生生物的毒性效应[J]. 海洋湖沼通报, 2014(3):112-120 Cong Y, Mu J L, Wang J Y. Behavior and toxicity of nanomaterials in aquatic environment[J]. Transactions of Oceanology and Limnology, 2014 (3):112-120(in Chinese)
Markus A A, Parsons J R, Roex E W M, et al. Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse[J]. Science of the Total Environment, 2013, 456-457:154-160
Marsalek B, Jancula D, Marsalkova E, et al. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria[J]. Environmental Science & Technology, 2012, 46(4):2316-2323
Wang Z Y, Li J, Zhao J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology, 2011, 45(14):6032-6040
汪苹, 孙志强, 王宇涛, 等. 纳米ZnO对微藻的毒性效应和生物富集的研究[J]. 环境科学与技术, 2018, 41(12):13-19 Wang P, Sun Z Q, Wang Y T, et al. Toxicity and bioaccumulation of zinc oxide nanoparticles by microalgaes[J]. Environmental Science & Technology, 2018, 41(12):13-19(in Chinese)
He X X, Xie C J, Ma Y H, et al. Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2019, 209:113-120
Li F M, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158:1-13
Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species:Scenedesmus sp.[J]. Journal of Nanoparticle Research, 2011, 13(8):3287-3299
Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids[J]. Environmental Science and Pollution Research International, 2006, 13(4):225-232
梁长华. 纳米NiO对小球藻的生物毒性及致毒机制研究[D]. 大连:大连海事大学, 2010:27 Liang C H. Research on biotoxicity and toxic mechanism of NiO nanoparticles on Chlorella vulgaris [D]. Dalian:Dalian Maritime University, 2010:27(in Chinese)
Blaise C, Gagné F, Férard J F, et al. Ecotoxicity of selected nano-materials to aquatic organisms[J]. Environmental Toxicology, 2008, 23(5):591-598
Kwok K W H, Leung K M Y, Flahaut E, et al. Chronic toxicity of double-walled carbon nanotubes to three marine organisms:Influence of different dispersion methods[J]. Nanomedicine, 2010, 5(6):951-961
Lang J, Melnykova M, Catania M, et al. A water-soluble
fullerene-derivative stimulates chlorophyll accumulation and has no toxic effect on Chlamydomonas reinhardtii[J]. Acta Biochimica Polonica, 2019, 66(3):257-262
Schwab F, Bucheli T D, Lukhele L P, et al. Are carbon nanotube effects on green algae caused by shading and agglomeration?[J]. Environmental Science & Technology, 2011, 45(14):6136-6144
Wei L P, Thakkar M, Chen Y H, et al. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta[J]. Aquatic Toxicology, 2010, 100(2):194-201
彭晓玲, 孟范平, 张倩, 等. 氧化石墨烯对淡水微藻生长及生物活性物质的影响[J]. 中国环境科学, 2019, 39(11):4849-4857 Peng X L, Meng F P, Zhang Q, et al. Effects of graphene oxide on the growth and bioactive compounds in freshwater microalgae[J]. China Environmental Science, 2019, 39(11):4849-4857(in Chinese)
朱小山, 朱琳, 田胜艳, 等. 三种碳纳米材料对水生生物的毒性效应[J]. 中国环境科学, 2008, 28(3):269-273 Zhu X S, Zhu L, Tian S Y, et al. Toxicity effect of three kinds of carbon nanomaterials on aquatic organisms[J]. China Environmental Science, 2008, 28(3):269-273(in Chinese)
Wang J X, Zhang X Z, Chen Y S, et al. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2008, 73(7):1121-1128
Qian H F, Zhu K, Lu H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris:New insights from proteomic and physiological analyses[J]. Science of the Total Environment, 2016, 572:1213-1221
Yin J Y, Dong Z M, Liu Y Y, et al. Toxicity of reduced graphene oxide modified by metals in microalgae:Effect of the surface properties of algal cells and nanomaterials[J]. Carbon, 2020, 169:182-192
Aravantinou A F, Tsarpali V, Dailianis S, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae[J]. Ecotoxicology and Environmental Safety, 2015, 114:109-116
Roy R, Parashar A, Bhuvaneshwari M, et al. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae:Chlorella and Scenedesmus species[J]. Aquatic Toxicology, 2016, 176:161-171
Oukarroum A, Bras S, Perreault F, et al. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta[J]. Ecotoxicology and Environmental Safety, 2012, 78:80-85
Zhao Z L, Xu L M, Wang Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii:Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis[J]. Environmental Science and Pollution Research International, 2021, 28(12):15032-15042
Zhang C, Wang J T, Tan L J, et al. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum:Attention to the accumulation of intracellular Zn[J]. Aquatic Toxicology, 2016, 178:158-164
Behra R, Wagner B, Sgier L, et al. Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii[J]. Aquatic Geochemistry, 2015, 21(2):331-342
Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii[J]. Environmental Science & Technology, 2008, 42(23):8959-8964
Pillai S, Behra R, Nestler H, et al. Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9):3490-3495
Nguyen N H A, von Moos N R, Slaveykova V I, et al. Biological effects of four iron-containing nanoremediation materials on the green alga Chlamydomonas sp.[J]. Ecotoxicology and Environmental Safety, 2018, 154:36-44
Velzeboer I, Hendriks A J, Ragas A M J, et al. Aquatic ecotoxicity tests of some nanomaterials[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1942-1947
Rodea-Palomares I, Boltes K, Fernández-Piñas F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms[J]. Toxicological Sciences, 2010, 119(1):135-145
廖兴盛, 王一翔, 陈佐泓, 等. 纳米二氧化钛(nTiO2)对三角褐指藻(Phaeodactylum tricornutum)光合系统的影响[J]. 生态环境学报, 2020, 29(4):778-785 Liao X S, Wang Y X, Chen Z H, et al. Effects of nano-titanium dioxide on photosystem of Phaeodactylum tricornutum[J]. Ecology and Environmental Sciences, 2020, 29(4):778-785(in Chinese)
Hou J, Yang Y Y, Wang P F, et al. Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances[J]. Environmental Science and Pollution Research International, 2017, 24(1):226-235
朱小山, 朱琳, 田胜艳, 等. 三种金属氧化物纳米颗粒的水生态毒性[J]. 生态学报, 2008, 28(8):3507-3516 Zhu X S, Zhu L, Tian S Y, et al. Aquatic ecotoxicities of nanoscale TiO2, ZnO and Al2O3 water suspensions[J]. Acta Ecologica Sinica, 2008, 28(8):3507-3516(in Chinese)
Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. The Science of the Total Environment, 2009, 407(4):1461-1468
于叶. 水介质中C60纳米颗粒对藻类的作用效应研究[D]. 上海:上海交通大学, 2016:52-53 Yu Y. Effects of C60 nanocrystallines on algae in aqueous system[D]. Shanghai:Shanghai Jiao Tong University, 2016 :52-53(in Chinese)
Wahid M H, Eroglu E, Chen X J, et al. Entrapment of Chlorella vulgaris cells within graphene oxide layers[J]. RSC Advances, 2013, 3(22):8180-8183
Nogueira P F M, Nakabayashi D, Zucolotto V. The effects of graphene oxide on green algae Raphidocelis subcapitata[J]. Aquatic Toxicology, 2015, 166:29-35
Zhao J, Cao X S, Wang Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017, 111:18-27
Zhang S J, Jiang Y L, Chen C S, et al. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots[J]. Aquatic Toxicology, 2013, 126:214-223
Morelli E, Salvadori E, Bizzarri R, et al. Interaction of CdSe/ZnS quantum dots with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta:A biophysical approach[J]. Biophysical Chemistry, 2013, 182:4-10
Lin S J, Bhattacharya P, Rajapakse N C, et al. Effects of quantum dots adsorption on algal photosynthesis[J]. The Journal of Physical Chemistry C, 2009, 113(25):10962-10966
张盼红, 庞成芳, 赵斌. 纳米材料对底栖动物的毒性效应研究进展[J]. 生态毒理学报, 2020, 15(4):66-78 Zhang P H, Pang C F, Zhao B. Review on the ecotoxicity of manufactured nanomaterials to the benthic invertebrates[J]. Asian Journal of Ecotoxicology, 2020, 15(4):66-78(in Chinese)
Lamelas C, Slaveykova V I. Comparison of Cd(Ⅱ), Cu(Ⅱ), and Pb(Ⅱ) biouptake by green algae in the presence of humic acid[J]. Environmental Science & Technology, 2007, 41(11):4172-4178
Wang Z, Wang S, Peijnenburg W J G M. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol:Independent action surpasses concentration addition[J]. Chemosphere, 2016, 156:8-13
Baun A, Sørensen S N, Rasmussen R F, et al.Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60[J]. Aquatic Toxicology, 2008, 86(3):379-387
Gunasekaran D, Chandrasekaran N, Jenkins D, et al. Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104250
Hall S, Bradley T, Moore J T, et al. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity[J]. Nanotoxicology, 2009, 3(2):91-97
Xie B, Xu Z H, Guo W H, et al. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles[J]. Environmental Science & Technology, 2008, 42(8):2853-2859
Verneuil L, Silvestre J, Mouchet F, et al. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea:"a sticky story"[J]. Nanotoxicology, 2015, 9(2):219-229
Tang Y L, Li S Y, Lu Y, et al. The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp.[J]. Environmental Toxicology, 2015, 30(8):895-903
Neale P A, Jamting à K, O'Malley E, et al. Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity[J]. Environmental Science:Nano, 2015, 2(1):86-93
Lin D H, Ji J, Long Z F, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.[J]. Water Research, 2012, 46(14):4477-4487
Tang Y L, Tian J L, Li S Y, et al. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa[J]. Science of the Total Environment, 2015, 532:154-161
章哲超, 胡佶, 刘淑霞, 等. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应[J]. 环境化学, 2018, 37(4):661-669 Zhang Z C, Hu J, Liu S X, et al. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum[J]. Environmental Chemistry, 2018, 37(4):661-669(in Chinese)
辛元元, 陈金媛, 程艳红, 等. 纳米TiO2与重金属Cd对铜绿微囊藻生物效应的影响[J]. 生态毒理学报, 2013, 8(1):23-28 Xin Y Y, Chen J Y, Cheng Y H, et al. Biological effects of nano-TiO2 and heavy metal Cd on M. aeruginosa[J]. Asian Journal of Ecotoxicology, 2013, 8(1):23-28(in Chinese)
Chen J Y, Qian Y, Li H R, et al. The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa[J]. Environmental Science and Pollution Research, 2015, 22(16):12407-12414
Hu C W, Hu N T, Li X L, et al. Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus[J]. Ecotoxicology and Environmental Safety, 2016, 132:360-365
Dalai S, Pakrashi S, Bhuvaneshwari M, et al. Toxic effect of Cr(Ⅵ) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae[J]. Aquatic Toxicology, 2014, 146:28-37
Saison C, Perreault F, Daigle J C, et al. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystemⅡ energy distribution) in the green alga, Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2010, 96(2):109-114
Schiavo S, Duroudier N, Bilbao E, et al. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae[J]. Science of the Total Environment, 2017, 577:45-53
Fan J J, Hu Y B, Li X Y. Nanoscale zero-valent iron coated with magnesium hydroxide for effective removal of cyanobacteria from water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15135-15142
Adeleye A S, Stevenson L M, Su Y M, et al. Influence of phytoplankton on fate and effects of modified zerovalent iron nanoparticles[J]. Environmental Science & Technology, 2016, 50(11):5597-5605
吉喜燕, 唐静懿, 叶璟, 等. 碳基纳米铜复合材料对普通小球藻胁迫作用的研究[J]. 生态环境学报, 2021, 30(3):578-585 Ji X Y, Tang J Y, Ye J, et al. Stressed effects of C-Cu2O nanoparticles on Chlorella vulgaris[J]. Ecology and Environmental Sciences, 2021, 30(3):578-585(in Chinese)
Wang M S, Li H B, Li Y H, et al. Dispersibility and size control of silver nanoparticles with anti-algal potential based on coupling effects of polyvinylpyrrolidone and sodium tripolyphosphate[J]. Nanomaterials, 2020, 10(6):1042
Khoshnamvand M, Hao Z N, Fadare O O, et al. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels[J]. Chemosphere, 2020, 258:127346
Hartmann N B, von der Kammer F, Hofmann T, et al. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability[J]. Toxicology, 2010, 269(2-3):190-197
Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro[J]. PLoS One, 2014, 9(7):e102108
Lei C, Zhang L Q, Yang K, et al. Toxicity of iron-based nanoparticles to green algae:Effects of particle size, crystal phase, oxidation state and environmental aging[J]. Environmental Pollution, 2016, 218:505-512
Samei M, Sarrafzadeh M H, Faramarzi M A. The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata[J]. Environmental Science and Pollution Research, 2019, 26(3):2409-2420
Chae Y, An Y J. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish[J]. Aquatic Toxicology, 2016, 173:94-104
Van Hoecke K, Quik J T K, Mankiewicz-Boczek J, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests[J]. Environmental Science & Technology, 2009, 43(12):4537-4546
李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应[J]. 农业环境科学学报, 2013, 32(6):1122-1127 Li Y J, Wang J, Cui Y B, et al. Ecotoxicological effects of ZnO and TiO2 nanoparticles on microalgae Scenedesmus oblignus[J]. Journal of Agro-Environment Science, 2013, 32(6):1122-1127(in Chinese)
Manier N, Bado-Nilles A, Delalain P, et al. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae[J]. Environmental Pollution, 2013, 180:63-70
王应军, 李娜, 罗潇宇, 等. 多壁碳纳米管对铜绿微囊藻生长及生理特征的影响[J]. 生态毒理学报, 2018, 13(6):316-325 Wang Y J, Li N, Luo X Y, et al. Effects of multi-walled carbon nanotubes on the growth and physiology of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2018, 13(6):316-325(in Chinese)
van Hoecke K, de Schamphelaere K A C, Ramirez-Garcia S, et al. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents[J]. Environment International, 2011, 37(6):1118-1125
Röhder L A, Brandt T, Sigg L, et al. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(Ⅲ) on short term effects to the green algae Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2014, 152:121-130
Sørensen S N, Baun A. Controlling silver nanoparticle exposure in algal toxicity testing:A matter of timing[J]. Nanotoxicology, 2015, 9(2):201-209
Schiavo S, Oliviero M, Miglietta M, et al. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels[J]. The Science of the Total Environment, 2016, 550:619-627
Zhang J X, Jiang L J, Wu D, et al. Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO2 nanoparticles stress[J]. Science of the Total Environment, 2020, 734:139443
Adeleye A S, Conway J R, Perez T, et al. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles[J]. Environmental Science & Technology, 2014, 48(21):12561-12568
Ghazaei F, Shariati M. Effects of titanium nanoparticles on the photosynthesis, respiration, and physiological parameters in Dunaliella salina and Dunaliella tertiolecta[J]. Protoplasma, 2020, 257(1):75-88
陈晓华, 张偲, 谭丽菊, 等. 人工纳米材料对海洋微藻的毒性研究进展[J]. 海洋科学, 2017, 41(6):134-143 Chen X H, Zhang C, Tan L J, et al. Research progress in toxicity of nanomaterials manufactured on microalgae[J]. Marine Sciences, 2017, 41(6):134-143(in Chinese)
王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010, 31(6):1409-1418 Wang Z Y, Zhao J, Li N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms[J]. Environmental Science, 2010, 31(6):1409-1418(in Chinese)
Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility[J]. Environmental Science & Technology, 2007, 41(24):8484-8490
Pakrashi S, Dalai S, T C P, et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations[J]. Aquatic Toxicology, 2013, 132-133:34-45
Miao A J, Schwehr K A, Xu C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances[J]. Environmental Pollution, 2009, 157(11):3034-3041
花文凤, 王大力, 高雅, 等. 纳米金属氧化物对羊角月牙藻的毒性研究[J]. 安全与环境学报, 2014, 14(4):307-311 Hua W F, Wang D L, Gao Y, et al. Effect of the typical metal oxide nanoparticles on the toxicity of the Selenastrum capricornutum[J]. Journal of Safety and Environment, 2014, 14(4):307-311(in Chinese)
Perreault F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the greenalga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87(11):1388-1394
Peng X H, Palma S, Fisher N S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae[J]. Aquatic Toxicology, 2011, 102(3-4):186-196
吴明珠, 何梅琳, 邹山梅, 等. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7):1259-1267 Wu M Z, He M L, Zou S M, et al. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7):1259-1267(in Chinese)
Van Hoecke K, De Schamphelaere K A C, Van der Meeren P, et al. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata:Importance of surface area[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1948-1957
Gong N, Shao K S, Che C, et al. Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris[J]. Marine Pollution Bulletin, 2019, 149:110532