Khin M M, Nair A S, Babu V J, et al. A review on nanomaterials for environmental remediation[J]. Energy & Environmental Science, 2012, 5(8):8075-8109
|
Madima N, Mishra S B, Inamuddin I, et al. Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater[J]. Environmental Chemistry Letters, 2020, 18(4):1169-1191
|
Xue L L, Lu B Z, Wu Z S, et al. Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants[J]. Chemical Engineering Journal, 2014, 243:494-499
|
Burchardt A D, Carvalho R N, Valente A, et al. Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp.[J]. Environmental Science & Technology, 2012, 46(20):11336-11344
|
Iswarya V, Manivannan J, De A, et al. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels[J]. Environmental Science and Pollution Research, 2016, 23(5):4844-4858
|
李芳芳, 潘容, 张偲, 等. 纳米铜粉对中肋骨条藻的毒性效应[J]. 中国环境科学, 2015, 35(9):2874-2880
Li F F, Pan R, Zhang C, et al. Inhibition effects of copper nanoparticles on the growth of Skeletonema costatum[J]. China Environmental Science, 2015, 35(9):2874-2880(in Chinese)
|
丛艺, 穆景利, 王菊英. 纳米材料在水环境中的行为及其对水生生物的毒性效应[J]. 海洋湖沼通报, 2014(3):112-120 Cong Y, Mu J L, Wang J Y. Behavior and toxicity of nanomaterials in aquatic environment[J]. Transactions of Oceanology and Limnology, 2014
(3):112-120(in Chinese)
|
Markus A A, Parsons J R, Roex E W M, et al. Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse[J]. Science of the Total Environment, 2013, 456-457:154-160
|
Marsalek B, Jancula D, Marsalkova E, et al. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria[J]. Environmental Science & Technology, 2012, 46(4):2316-2323
|
Wang Z Y, Li J, Zhao J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology, 2011, 45(14):6032-6040
|
汪苹, 孙志强, 王宇涛, 等. 纳米ZnO对微藻的毒性效应和生物富集的研究[J]. 环境科学与技术, 2018, 41(12):13-19
Wang P, Sun Z Q, Wang Y T, et al. Toxicity and bioaccumulation of zinc oxide nanoparticles by microalgaes[J]. Environmental Science & Technology, 2018, 41(12):13-19(in Chinese)
|
He X X, Xie C J, Ma Y H, et al. Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2019, 209:113-120
|
Li F M, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158:1-13
|
Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species:Scenedesmus sp.[J]. Journal of Nanoparticle Research, 2011, 13(8):3287-3299
|
Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids[J]. Environmental Science and Pollution Research International, 2006, 13(4):225-232
|
梁长华. 纳米NiO对小球藻的生物毒性及致毒机制研究[D]. 大连:大连海事大学, 2010:27 Liang C H. Research on biotoxicity and toxic mechanism of NiO nanoparticles on Chlorella vulgaris [D]. Dalian:Dalian Maritime University, 2010:27(in Chinese)
|
Blaise C, Gagné F, Férard J F, et al. Ecotoxicity of selected nano-materials to aquatic organisms[J]. Environmental Toxicology, 2008, 23(5):591-598
|
Kwok K W H, Leung K M Y, Flahaut E, et al. Chronic toxicity of double-walled carbon nanotubes to three marine organisms:Influence of different dispersion methods[J]. Nanomedicine, 2010, 5(6):951-961
|
Lang J, Melnykova M, Catania M, et al. A water-soluble
|
fullerene-derivative stimulates chlorophyll accumulation and has no toxic effect on Chlamydomonas reinhardtii[J]. Acta Biochimica Polonica, 2019, 66(3):257-262
|
Schwab F, Bucheli T D, Lukhele L P, et al. Are carbon nanotube effects on green algae caused by shading and agglomeration?[J]. Environmental Science & Technology, 2011, 45(14):6136-6144
|
Wei L P, Thakkar M, Chen Y H, et al. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta[J]. Aquatic Toxicology, 2010, 100(2):194-201
|
彭晓玲, 孟范平, 张倩, 等. 氧化石墨烯对淡水微藻生长及生物活性物质的影响[J]. 中国环境科学, 2019, 39(11):4849-4857
Peng X L, Meng F P, Zhang Q, et al. Effects of graphene oxide on the growth and bioactive compounds in freshwater microalgae[J]. China Environmental Science, 2019, 39(11):4849-4857(in Chinese)
|
朱小山, 朱琳, 田胜艳, 等. 三种碳纳米材料对水生生物的毒性效应[J]. 中国环境科学, 2008, 28(3):269-273
Zhu X S, Zhu L, Tian S Y, et al. Toxicity effect of three kinds of carbon nanomaterials on aquatic organisms[J]. China Environmental Science, 2008, 28(3):269-273(in Chinese)
|
Wang J X, Zhang X Z, Chen Y S, et al. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2008, 73(7):1121-1128
|
Qian H F, Zhu K, Lu H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris:New insights from proteomic and physiological analyses[J]. Science of the Total Environment, 2016, 572:1213-1221
|
Yin J Y, Dong Z M, Liu Y Y, et al. Toxicity of reduced graphene oxide modified by metals in microalgae:Effect of the surface properties of algal cells and nanomaterials[J]. Carbon, 2020, 169:182-192
|
Aravantinou A F, Tsarpali V, Dailianis S, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae[J]. Ecotoxicology and Environmental Safety, 2015, 114:109-116
|
Roy R, Parashar A, Bhuvaneshwari M, et al. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae:Chlorella and Scenedesmus species[J]. Aquatic Toxicology, 2016, 176:161-171
|
Oukarroum A, Bras S, Perreault F, et al. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta[J]. Ecotoxicology and Environmental Safety, 2012, 78:80-85
|
Zhao Z L, Xu L M, Wang Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii:Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis[J]. Environmental Science and Pollution Research International, 2021, 28(12):15032-15042
|
Zhang C, Wang J T, Tan L J, et al. Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum:Attention to the accumulation of intracellular Zn[J]. Aquatic Toxicology, 2016, 178:158-164
|
Behra R, Wagner B, Sgier L, et al. Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii[J]. Aquatic Geochemistry, 2015, 21(2):331-342
|
Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii[J]. Environmental Science & Technology, 2008, 42(23):8959-8964
|
Pillai S, Behra R, Nestler H, et al. Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9):3490-3495
|
Nguyen N H A, von Moos N R, Slaveykova V I, et al. Biological effects of four iron-containing nanoremediation materials on the green alga Chlamydomonas sp.[J]. Ecotoxicology and Environmental Safety, 2018, 154:36-44
|
Velzeboer I, Hendriks A J, Ragas A M J, et al. Aquatic ecotoxicity tests of some nanomaterials[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1942-1947
|
Rodea-Palomares I, Boltes K, Fernández-Piñas F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms[J]. Toxicological Sciences, 2010, 119(1):135-145
|
廖兴盛, 王一翔, 陈佐泓, 等. 纳米二氧化钛(nTiO2)对三角褐指藻(Phaeodactylum tricornutum)光合系统的影响[J]. 生态环境学报, 2020, 29(4):778-785
Liao X S, Wang Y X, Chen Z H, et al. Effects of nano-titanium dioxide on photosystem of Phaeodactylum tricornutum[J]. Ecology and Environmental Sciences, 2020, 29(4):778-785(in Chinese)
|
Hou J, Yang Y Y, Wang P F, et al. Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances[J]. Environmental Science and Pollution Research International, 2017, 24(1):226-235
|
朱小山, 朱琳, 田胜艳, 等. 三种金属氧化物纳米颗粒的水生态毒性[J]. 生态学报, 2008, 28(8):3507-3516
Zhu X S, Zhu L, Tian S Y, et al. Aquatic ecotoxicities of nanoscale TiO2, ZnO and Al2O3 water suspensions[J]. Acta Ecologica Sinica, 2008, 28(8):3507-3516(in Chinese)
|
Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. The Science of the Total Environment, 2009, 407(4):1461-1468
|
于叶. 水介质中C60纳米颗粒对藻类的作用效应研究[D]. 上海:上海交通大学, 2016:52-53 Yu Y. Effects of C60 nanocrystallines on algae in aqueous system[D]. Shanghai:Shanghai Jiao Tong University, 2016
:52-53(in Chinese)
|
Wahid M H, Eroglu E, Chen X J, et al. Entrapment of Chlorella vulgaris cells within graphene oxide layers[J]. RSC Advances, 2013, 3(22):8180-8183
|
Nogueira P F M, Nakabayashi D, Zucolotto V. The effects of graphene oxide on green algae Raphidocelis subcapitata[J]. Aquatic Toxicology, 2015, 166:29-35
|
Zhao J, Cao X S, Wang Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017, 111:18-27
|
Zhang S J, Jiang Y L, Chen C S, et al. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots[J]. Aquatic Toxicology, 2013, 126:214-223
|
Morelli E, Salvadori E, Bizzarri R, et al. Interaction of CdSe/ZnS quantum dots with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta:A biophysical approach[J]. Biophysical Chemistry, 2013, 182:4-10
|
Lin S J, Bhattacharya P, Rajapakse N C, et al. Effects of quantum dots adsorption on algal photosynthesis[J]. The Journal of Physical Chemistry C, 2009, 113(25):10962-10966
|
张盼红, 庞成芳, 赵斌. 纳米材料对底栖动物的毒性效应研究进展[J]. 生态毒理学报, 2020, 15(4):66-78
Zhang P H, Pang C F, Zhao B. Review on the ecotoxicity of manufactured nanomaterials to the benthic invertebrates[J]. Asian Journal of Ecotoxicology, 2020, 15(4):66-78(in Chinese)
|
Lamelas C, Slaveykova V I. Comparison of Cd(Ⅱ), Cu(Ⅱ), and Pb(Ⅱ) biouptake by green algae in the presence of humic acid[J]. Environmental Science & Technology, 2007, 41(11):4172-4178
|
Wang Z, Wang S, Peijnenburg W J G M. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol:Independent action surpasses concentration addition[J]. Chemosphere, 2016, 156:8-13
|
Baun A, Sørensen S N, Rasmussen R F, et al.Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60[J]. Aquatic Toxicology, 2008, 86(3):379-387
|
Gunasekaran D, Chandrasekaran N, Jenkins D, et al. Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104250
|
Hall S, Bradley T, Moore J T, et al. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity[J]. Nanotoxicology, 2009, 3(2):91-97
|
Xie B, Xu Z H, Guo W H, et al. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles[J]. Environmental Science & Technology, 2008, 42(8):2853-2859
|
Verneuil L, Silvestre J, Mouchet F, et al. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea:"a sticky story"[J]. Nanotoxicology, 2015, 9(2):219-229
|
Tang Y L, Li S Y, Lu Y, et al. The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp.[J]. Environmental Toxicology, 2015, 30(8):895-903
|
Neale P A, Jamting à K, O'Malley E, et al. Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity[J]. Environmental Science:Nano, 2015, 2(1):86-93
|
Lin D H, Ji J, Long Z F, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.[J]. Water Research, 2012, 46(14):4477-4487
|
Tang Y L, Tian J L, Li S Y, et al. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa[J]. Science of the Total Environment, 2015, 532:154-161
|
章哲超, 胡佶, 刘淑霞, 等. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应[J]. 环境化学, 2018, 37(4):661-669
Zhang Z C, Hu J, Liu S X, et al. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum[J]. Environmental Chemistry, 2018, 37(4):661-669(in Chinese)
|
辛元元, 陈金媛, 程艳红, 等. 纳米TiO2与重金属Cd对铜绿微囊藻生物效应的影响[J]. 生态毒理学报, 2013, 8(1):23-28
Xin Y Y, Chen J Y, Cheng Y H, et al. Biological effects of nano-TiO2 and heavy metal Cd on M. aeruginosa[J]. Asian Journal of Ecotoxicology, 2013, 8(1):23-28(in Chinese)
|
Chen J Y, Qian Y, Li H R, et al. The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa[J]. Environmental Science and Pollution Research, 2015, 22(16):12407-12414
|
Hu C W, Hu N T, Li X L, et al. Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus[J]. Ecotoxicology and Environmental Safety, 2016, 132:360-365
|
Dalai S, Pakrashi S, Bhuvaneshwari M, et al. Toxic effect of Cr(Ⅵ) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae[J]. Aquatic Toxicology, 2014, 146:28-37
|
Saison C, Perreault F, Daigle J C, et al. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystemⅡ energy distribution) in the green alga, Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2010, 96(2):109-114
|
Schiavo S, Duroudier N, Bilbao E, et al. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae[J]. Science of the Total Environment, 2017, 577:45-53
|
Fan J J, Hu Y B, Li X Y. Nanoscale zero-valent iron coated with magnesium hydroxide for effective removal of cyanobacteria from water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15135-15142
|
Adeleye A S, Stevenson L M, Su Y M, et al. Influence of phytoplankton on fate and effects of modified zerovalent iron nanoparticles[J]. Environmental Science & Technology, 2016, 50(11):5597-5605
|
吉喜燕, 唐静懿, 叶璟, 等. 碳基纳米铜复合材料对普通小球藻胁迫作用的研究[J]. 生态环境学报, 2021, 30(3):578-585
Ji X Y, Tang J Y, Ye J, et al. Stressed effects of C-Cu2O nanoparticles on Chlorella vulgaris[J]. Ecology and Environmental Sciences, 2021, 30(3):578-585(in Chinese)
|
Wang M S, Li H B, Li Y H, et al. Dispersibility and size control of silver nanoparticles with anti-algal potential based on coupling effects of polyvinylpyrrolidone and sodium tripolyphosphate[J]. Nanomaterials, 2020, 10(6):1042
|
Khoshnamvand M, Hao Z N, Fadare O O, et al. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels[J]. Chemosphere, 2020, 258:127346
|
Hartmann N B, von der Kammer F, Hofmann T, et al. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability[J]. Toxicology, 2010, 269(2-3):190-197
|
Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro[J]. PLoS One, 2014, 9(7):e102108
|
Lei C, Zhang L Q, Yang K, et al. Toxicity of iron-based nanoparticles to green algae:Effects of particle size, crystal phase, oxidation state and environmental aging[J]. Environmental Pollution, 2016, 218:505-512
|
Samei M, Sarrafzadeh M H, Faramarzi M A. The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata[J]. Environmental Science and Pollution Research, 2019, 26(3):2409-2420
|
Chae Y, An Y J. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish[J]. Aquatic Toxicology, 2016, 173:94-104
|
Van Hoecke K, Quik J T K, Mankiewicz-Boczek J, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests[J]. Environmental Science & Technology, 2009, 43(12):4537-4546
|
李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应[J]. 农业环境科学学报, 2013, 32(6):1122-1127
Li Y J, Wang J, Cui Y B, et al. Ecotoxicological effects of ZnO and TiO2 nanoparticles on microalgae Scenedesmus oblignus[J]. Journal of Agro-Environment Science, 2013, 32(6):1122-1127(in Chinese)
|
Manier N, Bado-Nilles A, Delalain P, et al. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae[J]. Environmental Pollution, 2013, 180:63-70
|
王应军, 李娜, 罗潇宇, 等. 多壁碳纳米管对铜绿微囊藻生长及生理特征的影响[J]. 生态毒理学报, 2018, 13(6):316-325
Wang Y J, Li N, Luo X Y, et al. Effects of multi-walled carbon nanotubes on the growth and physiology of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2018, 13(6):316-325(in Chinese)
|
van Hoecke K, de Schamphelaere K A C, Ramirez-Garcia S, et al. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents[J]. Environment International, 2011, 37(6):1118-1125
|
Röhder L A, Brandt T, Sigg L, et al. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(Ⅲ) on short term effects to the green algae Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2014, 152:121-130
|
Sørensen S N, Baun A. Controlling silver nanoparticle exposure in algal toxicity testing:A matter of timing[J]. Nanotoxicology, 2015, 9(2):201-209
|
Schiavo S, Oliviero M, Miglietta M, et al. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels[J]. The Science of the Total Environment, 2016, 550:619-627
|
Zhang J X, Jiang L J, Wu D, et al. Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO2 nanoparticles stress[J]. Science of the Total Environment, 2020, 734:139443
|
Adeleye A S, Conway J R, Perez T, et al. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles[J]. Environmental Science & Technology, 2014, 48(21):12561-12568
|
Ghazaei F, Shariati M. Effects of titanium nanoparticles on the photosynthesis, respiration, and physiological parameters in Dunaliella salina and Dunaliella tertiolecta[J]. Protoplasma, 2020, 257(1):75-88
|
陈晓华, 张偲, 谭丽菊, 等. 人工纳米材料对海洋微藻的毒性研究进展[J]. 海洋科学, 2017, 41(6):134-143
Chen X H, Zhang C, Tan L J, et al. Research progress in toxicity of nanomaterials manufactured on microalgae[J]. Marine Sciences, 2017, 41(6):134-143(in Chinese)
|
王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010, 31(6):1409-1418
Wang Z Y, Zhao J, Li N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms[J]. Environmental Science, 2010, 31(6):1409-1418(in Chinese)
|
Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility[J]. Environmental Science & Technology, 2007, 41(24):8484-8490
|
Pakrashi S, Dalai S, T C P, et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations[J]. Aquatic Toxicology, 2013, 132-133:34-45
|
Miao A J, Schwehr K A, Xu C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances[J]. Environmental Pollution, 2009, 157(11):3034-3041
|
花文凤, 王大力, 高雅, 等. 纳米金属氧化物对羊角月牙藻的毒性研究[J]. 安全与环境学报, 2014, 14(4):307-311
Hua W F, Wang D L, Gao Y, et al. Effect of the typical metal oxide nanoparticles on the toxicity of the Selenastrum capricornutum[J]. Journal of Safety and Environment, 2014, 14(4):307-311(in Chinese)
|
Perreault F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the greenalga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87(11):1388-1394
|
Peng X H, Palma S, Fisher N S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae[J]. Aquatic Toxicology, 2011, 102(3-4):186-196
|
吴明珠, 何梅琳, 邹山梅, 等. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7):1259-1267
Wu M Z, He M L, Zou S M, et al. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7):1259-1267(in Chinese)
|
Van Hoecke K, De Schamphelaere K A C, Van der Meeren P, et al. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata:Importance of surface area[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1948-1957
|
Gong N, Shao K S, Che C, et al. Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris[J]. Marine Pollution Bulletin, 2019, 149:110532
|