[1] |
杭世珺, 傅涛, 戴晓虎, 等. 技术路线没有走通, 产业没有融通, 政策缺乏贯通 污泥出路困境如何破?[J]. 环境经济, 2019(2): 34-39.
|
[2] |
ZHAO J, GUI L, WANG Q, et al. Aged refuse enhances anaerobic digestion of waste activated sludge[J]. Water Research, 2017, 123: 724-733. doi: 10.1016/j.watres.2017.07.026
|
[3] |
WANG Q, WEI W, GONG Y, et al. Technologies for reducing sludge production in wastewater treatment plants: State of the art[J]. Science of the Total Environment, 2017, 587-588: 510-521. doi: 10.1016/j.scitotenv.2017.02.203
|
[4] |
CLARKE B O, SMITH S R. Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids[J]. Environment International, 2011, 37(1): 226-247. doi: 10.1016/j.envint.2010.06.004
|
[5] |
APARICIO I, SANTOS J L, ALONSO E. Limitation of the concentration of organic pollutants in sewage sludge for agricultural purposes: A case study in South Spain[J]. Waste Management, 2009, 29(5): 1747-1753. doi: 10.1016/j.wasman.2008.11.003
|
[6] |
MENG X Z, VENKATESAN A K, NI Y L, et al. Organic contaminants in Chinese sewage sludge: A meta-analysis of the literature of the past 30 years[J]. Environmental Science & Technology, 2016, 50(11): 5454-5466.
|
[7] |
李素慧, 许智华, 樊小军. 污水处理厂污泥处理处置现状分析及建议[J]. 能源研究与信息, 2011, 27(4): 187-192. doi: 10.3969/j.issn.1008-8857.2011.04.001
|
[8] |
LAVADO R S, RODRIGUEZ M B, TABOADA M A. Treatment with biosolids affects soil availability and plant uptake of potentially toxic elements[J]. Agriculture Ecosystems & Environment, 2005, 109(3/4): 360-364.
|
[9] |
SHOBER A L, STEHOUWER R C, MACNEAL K E. Chemical fractionation of trace elements in biosolid-amended soils and correlation with trace elements in crop tissue[J]. Communications in Soil Science & Plant Analysis, 2007, 38(7): 1029-1046.
|
[10] |
International Journal of Environmental Science and Technology. Effect of straw on microbial community composition and degradation efficiency of polycyclic aromatic hydrocarbons in sludge digester[J]. International Journal of Environmental Science and Technology, 2019, 16(12): 7973-7986.
|
[11] |
李新. 纤维素对污泥中多环芳烃厌氧生物降解的影响研究[D]. 贵州: 贵州大学, 2017.
|
[12] |
CHANDRA R, TAKEUCHI H, HASEGAWA T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1462-1476. doi: 10.1016/j.rser.2011.11.035
|
[13] |
HENRY S M, GRBIC-GALIC D. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer[J]. Applied and Environmental Microbiology, 1991, 57(1): 236-244.
|
[14] |
MILTON L L, MILOS V N, KEITH D B. Analytical Chemistry of Polycyclic Aromatic Compounds[M]. New York: Academic Press, 1981.
|
[15] |
LAHA S, LUTHY R G. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems[J]. Biotechnology and Bioengineering, 1992, 40(11): 1367-1380. doi: 10.1002/(ISSN)1097-0290
|
[16] |
MCNALLY D L, MIHELCIC J R, LUEKING D R. Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions[J]. Chemosphere, 1999, 38(6): 1313-1321. doi: 10.1016/S0045-6535(98)00532-3
|
[17] |
RODRIGUES V D, TORRES T T, OTTOBONI L M M. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2014, 106(5): 879-890. doi: 10.1007/s10482-014-0257-6
|
[18] |
MOLLER A K, SOBORG D A, Al SOUND W A, et al. Bacterial community structure in high-arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation[J]. Polar Research, 2013, 32(1): 1-11.
|
[19] |
WANG Y, SHENG H F, HE Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8264-8271. doi: 10.1128/AEM.01821-12
|
[20] |
SCHLOSS P D, GEVERS D, WESTCOTT S L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies[J]. Plos One, 2011, 6(12): e27310. doi: 10.1371/journal.pone.0027310
|
[21] |
FOUTS D E, SEBASTIAN S, JANAKI P, et al. Next generation sequencing to define prokaryotic and fungal diversity in the Bovine Rumen[J]. Plos One, 2012, 7(11): e48289. doi: 10.1371/journal.pone.0048289
|
[22] |
OBERAUNER L, ZACHOW C, LACKNER S, et al. The ignored diversity: Complex bacterial communities in intensive care units revealed by 16S pyrosequencing[J]. Scientific Reports, 2013, 3: 1413-1424. doi: 10.1038/srep01413
|
[23] |
NELSON M C, MORROSON M, YU Z. A meta-analysis of the microbial diversity observed in anaerobic digesters[J]. Bioresource Technology, 2011, 102(4): 3730-3739. doi: 10.1016/j.biortech.2010.11.119
|
[24] |
RIVERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. ISME Journal, 2009, 3(6): 700-714. doi: 10.1038/ismej.2009.2
|
[25] |
BURNS A S, PUGH C W, SEGID Y T, et al. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage[J]. Biodegradation, 2012, 23(3): 415-429. doi: 10.1007/s10532-011-9520-y
|
[26] |
NIEPCERON M, MARTIN-LAURENT M, CRAMPON F, et al. GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils[J]. Environmental Pollution, 2103, 180: 199-205.
|
[27] |
ROGERS S W, ONG S K, MOORMAN T B. Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH[J]. Chemosphere, 2007, 69: 1563-1573. doi: 10.1016/j.chemosphere.2007.05.058
|
[28] |
IMFELD G, ARAGONES C E, FETZER I, et al. Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1, 2-dichloroethene-contaminated groundwater[J]. FEMS Microbiology Ecology, 2010, 72(1): 74-88. doi: 10.1111/fem.2010.72.issue-1
|
[29] |
WANG L, ZHENG B, LEI K. Diversity and distribution of bacterial community in the coastal sediments of Bohai Bay, China[J]. Acta Oceanologica Sinica, 2015, 34(10): 122-131. doi: 10.1007/s13131-015-0719-3
|
[30] |
BALDWIN S A, KHOSHNOODI M, REZADEBASHI M, et al. The microbial community of a passive biochemical reactor treating arsenic, zinc and sulfate-rich seepage[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 27.
|
[31] |
TISCHER K, KLEINSTEUBER S, SCHLEINITZ K M, et al. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer[J]. Environmental Microbiology, 2013, 15(9): 2603-2615. doi: 10.1111/emi.2013.15.issue-9
|
[32] |
YAN Z S, HAO Z, WU H F, et al. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments[J]. Journal of Hazardous Materials, 2019, 367: 99-108. doi: 10.1016/j.jhazmat.2018.12.071
|