[1] HUANG H W, LI X W, WANG J J, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3[J]. ACS Catalysis, 2015, 5(7): 4094 − 4103. doi: 10.1021/acscatal.5b00444
[2] LIAO G, ZHU D, LI L, et al. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation[J]. Journal of Hazardous Materials, 2014, 280: 531 − 535. doi: 10.1016/j.jhazmat.2014.08.052
[3] CHANG C, ZHU L Y, WANG S F, et al. Novel mesoporous graphite carbon nitride/biol heterojunction for enhancing photocatalytic performance under visible-light irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 5083 − 5093.
[4] CHANG C, FU Y, H UM, et al. Photodegradation of bisphenol a by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation[J]. Applied Catalysis B: Environmental, 2013, 142: 553 − 560.
[5] XU Y G, XIE M, HUANG S Q, et al. High yield synthesis of nano-size g-C3N4 derivatives by a dissolve-regrowth method with enhanced photocatalytic ability[J]. RSC Advances, 2015, 5(33): 26281 − 26290. doi: 10.1039/C5RA01206F
[6] TAHIR M, CAO C, MAHMOOD N, et al. Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1258 − 1265.
[7] SUN H Q, ZHOU G L, WANG Y X, et al. A new metal-free carbon hybrid for enhanced photocatalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(19): 16745 − 16754.
[8] LI J Q, HAO H J, ZHU Z F, et al. Construction of g-C3N4-WO3-BI2WO6 double z-scheme system with enhanced photoelectrochemical performance[J]. Materials Letters, 2016, 168: 180 − 183. doi: 10.1016/j.matlet.2016.01.058
[9] ZHAO J L, JI Z Y, SHEN X P, et al. Facile synthesis of WO3 nanorods/g-C3N4 composites with enhanced photocatalytic activity[J]. Ceramics International, 2015, 41(4): 5600 − 5606. doi: 10.1016/j.ceramint.2014.12.140
[10] ZHAO G X, HUANG X B, FINA F, et al. Facile structure design based on C3N4 for mediator-free z-scheme water splitting under visible light[J]. CatalysisScience & Technology, 2015, 5(6): 3416 − 3422.
[11] GU Q, GAO Z W, ZHAO H G, et al. Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light[J]. RSC Advances, 2015, 5(61): 49317 − 49325. doi: 10.1039/C5RA07284K
[12] WU P, WANG J R, ZHAO J, et al. Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage[J]. Journal of Materials Chemistry A, 2014, 2(47): 20338 − 20344. doi: 10.1039/C4TA04100C
[13] XU J, WANG Y J, ZHU Y F. Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(33): 10566 − 10572. doi: 10.1021/la402268u
[14] ZHAN F Q, XIE RR, LiW Z, et al. In situ synthesis of g-C3N4/WO3 heterojunction plates array films with enhanced photoelectrochemical performance[J]. RSC Advances, 2015, 5(85): 69753 − 69760. doi: 10.1039/C5RA11464K
[15] GONDAL MA, ADESIDA AA, RASHID SG, et al. Preparation of WO3/g-C3N4 composites and their enhanced photodegradation of contaminants in aqueous solution under visible light irradiation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(1): 357 − 367. doi: 10.1007/s11144-014-0787-y
[16] DING J, LIU QQ, ZHANG Z Y, et al. Carbon nitride nanosheets decorated with WO3 nanorods: ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Applied Catalysis B: Environmental, 2015, 165: 511 − 518. doi: 10.1016/j.apcatb.2014.10.037
[17] CHEN S F, HU Y F, JIANG X L, et al. Fabrication and characterization of novel Z-scheme photocatalyst WO3/g-C3N4 with high efficient visible light photocatalytic activity[J]. Materials Chemistry and Physics, 2015, 149: 512 − 521.
[18] YANG M, HU S Z, LI F Y, et al. The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst[J]. Ceramics International, 2014, 40(8): 11963 − 11969. doi: 10.1016/j.ceramint.2014.04.033
[19] KATSUMATA H, TACHI Y, SUZUKI T, et al. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC Advances, 2014, 4(41): 21405 − 21409. doi: 10.1039/C4RA02511C
[20] HOU Y, ZUO F, DAGG AP, et al. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation[J]. Advanced Materials, 2014, 26(29): 5043 − 5049. doi: 10.1002/adma.201401032
[21] CHENS F, HU Y F, MENG S G, et al. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3[J]. Applied Catalysis B: Environmental, 2014, 150: 564 − 573.
[22] DOAN A T, THI X D N, NGUYEN P H, et al. Graphitic g-C3N4-WO3 composite: synthesis and photocatalytic properties[J]. Bulletin of the Korean Chemical Society, 2014, 35(6): 1794 − 1798. doi: 10.5012/bkcs.2014.35.6.1794
[23] ZANG Y P, LI L P, ZUO Y, et al. Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light[J]. RSC Advances, 2013, 3(33): 13646 − 13650. doi: 10.1039/c3ra41982g
[24] KATSUMATA K., MOTOYOSHI R, MATSUSHITA N, et al. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas[J]. Journal of Hazardous Materials, 2013, 260: 475 − 482. doi: 10.1016/j.jhazmat.2013.05.058
[25] HUANG L, XU H, LI Y, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions, 2013, 42(24): 8606 − 8616. doi: 10.1039/c3dt00115f