[1] |
苏鹏, 陆达伟, 杨学志, 等. 非传统稳定同位素在大气颗粒物溯源中的应用[J]. 中国科学: 化学, 2018, 48(10): 1163 − 1170.
|
[2] |
蒲雅丽, 涂耀仁, 游镇烽, 等. Pb-Zn同位素在沉积物重金属污染源解析方面的应用: 综述与展望[J]. 环境化学, 2017, 36(3): 581 − 590. doi: 10.7524/j.issn.0254-6108.2017.03.2016062804
|
[3] |
夏莹.岩浆演化过程中Fe同位素分馏机制及实验制约岩浆—热液间Cu同位素分馏[D].合肥: 中国科学技术大学, 2018.
|
[4] |
BOHDAN K, ADELA Š, VOJTECH E, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J]. Chemical Geology, 2018, 493: 121 − 135. doi: 10.1016/j.chemgeo.2018.05.035
|
[5] |
LI S Z, ZHU X K, WU L H, et al. Cu isotopic compositions in Elsholtzia splendens: Influence of soil condition and growth period on Cu isotopic fractionation in plant tissue[J]. Chemical Geology, 2016, 444: 49 − 58. doi: 10.1016/j.chemgeo.2016.09.036
|
[6] |
YEONGMIN K, INSUNG L, SODNOM O, et al. Cu and S isotopic signatures of the Erdenetiin Ovoo porphyry Cu-Mo deposit, northern Mongolia: Implications for their origin and mineral exploration[J]. Ore Geology Reviews, 2019, 104: 656 − 669. doi: 10.1016/j.oregeorev.2018.11.025
|
[7] |
VANCE D, MATTHEWS A, ANDREW K, et al. The behaviour of Cu and Zn isotopes during soil development: Controls on the dissolved load of rivers[J]. Chemical Geology, 2016, 445: 36 − 53. doi: 10.1016/j.chemgeo.2016.06.002
|
[8] |
范飞鹏, 肖惠良, 陈乐柱, 等. 粤东新寮岽铜多金属矿区钻孔深部矿体铜同位素研究[J]. 岩矿测试, 2017, 36(4): 420 − 429.
|
[9] |
MARTIN M, RAFAEL B, VOJTECH E, et al. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes[J]. Chemical Geology, 2019, 515: 61 − 67.
|
[10] |
刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5): 1 − 28.
|
[11] |
王泽洲, 刘盛遨, 李丹丹, 等. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5): 72 − 83.
|
[12] |
POKROVSKY O S, VIERS J, EMNOVA E E, et al. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1742 − 1757. doi: 10.1016/j.gca.2008.01.018
|
[13] |
RYAN B M, KIRBY J K, DEGRYSE F, et al. Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands[J]. Environmental Science & Technology, 2014, 48(15): 8620 − 8626.
|
[14] |
LI D D, LIU S A, LI S G. Copper isotope fractionation during adsorption onto kaolinite: Experimental approach and applications[J]. Chemical Geology, 2015, 396: 74 − 82. doi: 10.1016/j.chemgeo.2014.12.020
|
[15] |
NAVARRETE J U, BORROK D M, VIVEROS M, et al. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 784 − 799. doi: 10.1016/j.gca.2010.11.011
|
[16] |
LIU S A, TENG F Z, LI S, et al. Copper and iron isotope fractionation during weathering and pedogenesis: insights from saprolite profiles[J]. Geochimica et Cosmochimica Acta, 2014, 146: 59 − 75. doi: 10.1016/j.gca.2014.09.040
|
[17] |
吕逸文. Cu和Zn在大陆风化过程中的同位素分馏以及Cu-Zn同位素在古环境研究中的应用[D].北京: 中国地质大学, 2018.
|
[18] |
FEKIACOVA Z, CORNU S, PICHAT.S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of The Total Environment, 2015, 517: 96 − 105. doi: 10.1016/j.scitotenv.2015.02.046
|
[19] |
BIGALKE M, WEYER S, WILCKE W, et al. Stable Cu isotope fractionation in soils during oxic weathering and podzolization[J]. Geochimica et Cosmochimica Acta, 2011, 75: 3119 − 3134. doi: 10.1016/j.gca.2011.03.005
|
[20] |
LI W Q, JACKSON S E, PEARSON N J, et al. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J]. Chemical Geology, 2009, 258: 38 − 49. doi: 10.1016/j.chemgeo.2008.06.047
|
[21] |
SOUTO-OLIVEIRA C E, BABINSKI M, ARAUJO D F, et al. Multi-isotope approach of Pb, Cu and Zn in urban aerosols and anthropogenic sources improves tracing of the atmospheric pollutant sources in megacities[J]. Atmospheric Environment, 2019, 198: 427 − 437. doi: 10.1016/j.atmosenv.2018.11.007
|
[22] |
SOUTO-OLIVEIRA C E, BABINSKI M, ARAUJO D F, et al. Multi-isotopic fingerprints (Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination[J]. Science of The Total Environment, 2018, 626: 1350 − 1366. doi: 10.1016/j.scitotenv.2018.01.192
|
[23] |
MARECHAL C N, TELOUK P, ALBAREDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1-4): 251 − 273. doi: 10.1016/S0009-2541(98)00191-0
|
[24] |
王家松, 彭丽娜. 铜同位素样品化学前处理方法的研究进展[A]. 理化检验-化学分册, 2012, 48(11): 1383-1388.
|
[25] |
葛军, 陈衍景, 邵宏翔. 铜同位素地球化学研究及其在矿床学应用的评述和讨论[J]. 地质与勘探, 2004(3): 5 − 10.
|
[26] |
BERMIN J, VANCE D, ARCHER C, et al. The determination of the isotopic composition of Cu and Zn in seaweater[J]. Chemical Geology, 2006, 226: 280 − 297. doi: 10.1016/j.chemgeo.2005.09.025
|
[27] |
BORROK D M, NIMICK D A, WANTY R B, et al. Isotopic variation of dissolved copper and zinc in stream waters affected by historical mining[J]. Geochimica et Cosmochimica Acta, 2008, 72: 329 − 344. doi: 10.1016/j.gca.2007.11.014
|
[28] |
EILER J M, GRAHAM C, VALLEY J M. SIMS analysis of oxygen isotopes: Matrix effects in complex minerals and glasses[J]. Chemical Geology, 1997, 138(3/4): 221 − 224.
|
[29] |
ZHU X, GUO Y, WILLIAMS R, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200(1/2): 47 − 62.
|
[30] |
LIU S A, LI D D, Li S G, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29: 122 − 13. doi: 10.1039/C3JA50232E
|
[31] |
ARCHER C, VANCE D. Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19: 656 − 665. doi: 10.1039/b315853e
|
[32] |
BORROK D M, WANTY R B, RIDLEY W I, et al. Separation of copper, iron, and zinc fromcomplex aqueous solutions for isotopic measurement[J]. Chemical Geology, 2007, 242(3): 400 − 414.
|
[33] |
DONG S F, GONZALEZ R O, HARRISON M R, et al. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom[J]. Atmospheric Environment, 2017, 165: 88 − 98. doi: 10.1016/j.atmosenv.2017.06.020
|
[34] |
CHEN J B, LOUVAT P, GAILLARDET J, et al. Direct separation of Zn from dilute aqueous solutions for isotope composition determination using multi-collector ICP-MS[J]. Chemical Geology, 2009, 259: 120 − 130. doi: 10.1016/j.chemgeo.2008.10.040
|
[35] |
TAKANO S, TANIMIZU M, HIRRATA T, et al. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediamine triacetic acid chelating resin[J]. Analytica Chimica Acta, 2013, 84(7): 33 − 41.
|
[36] |
谭德灿, 朱建明, 李社红, 等. 同位素双稀释剂法的原理与应用: 应用部分[J]. 矿物岩石地球化学通报, 2017, 36(6): 948 − 954. doi: 10.3969/j.issn.1007-2802.2017.06.010
|
[37] |
CHEN J B, GAILLARDET J, LOUVAT P. Zinc isotopes in the Seine River waters, France: A probe of anthropogenic contamination[J]. Environmental Science & Technology, 2008, 42(17): 6494 − 6501.
|
[38] |
VANCE D, ARCHER C, BERMIN J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 204 − 213.
|
[39] |
侯可军, 李延河, 田有荣, 等. MC-ICP-MS高精度Cu、Zn同位素测试技术[J]. 矿床地质, 2008, 27(6): 774 − 781. doi: 10.3969/j.issn.0258-7106.2008.06.010
|
[40] |
SHIELDS W R, GOLDICH S S, GAMER E L, et al. Natural variations in the abundance ratio and the atomic weight of copper[J]. Journal of Geophysical Research, 1965, 70(2): 479 − 491. doi: 10.1029/JZ070i002p00479
|
[41] |
唐索寒, 朱祥坤, 李津, 等. 用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制[J]. 岩矿测试, 2016, 35(2): 127 − 133.
|
[42] |
HOU Q H, ZHOU L, GAO S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 280 − 287. doi: 10.1039/C4JA00488D
|
[43] |
于瑞莲, 胡恭任. 土壤中重金属污染源解析研究进展[J]. 有色金属, 2008, 60(4): 158 − 165.
|
[44] |
OUSTRIERE N, MARCHAND L, GALLAND W. Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and phytotoxicity in a Cu-contaminated soil from a wood preservation site[J]. Science of The Total Environment, 2016, 566: 816 − 825.
|
[45] |
MARTIN M, ALICE J, VOJTECH E, et al. Copper isotopic record in soils and tree rings near a copper smelter, Copperbelt, Zambia[J]. Science of The Total Environment, 2018, 621(4): 9 − 17.
|
[46] |
SONG S M, MATHUR R, RUIZ J, et al. Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China[J]. Science of the Total Environment, 2016, 544: 677 − 685. doi: 10.1016/j.scitotenv.2015.11.101
|
[47] |
SILLEROVA H, CHRASTNY V, MARTINA V, et al. Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks[J]. Environment Poulltion, 2017, 228: 149 − 157. doi: 10.1016/j.envpol.2017.05.030
|
[48] |
温冰. 湖南锡矿山水环境中锑来源及迁移转化的多元同位素解析[D]. 武汉: 中国地质大学, 2017.
|
[49] |
MARTIN N, ADELA S, VLADISLAY C, et al. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime[J]. Environmental Pollution, 2016, 218(11): 1135 − 1146.
|
[50] |
THAPALIA A, BORROK D M, VANMETRE P C, et al. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake[J]. Environmental Science & Technology, 2010, 44(5): 1544 − 1550.
|
[51] |
SISGSL D I, BICKFORD M E, ORRELL S E. The use of strontium and lead isotopes to identify sources of water beneath the Fresh Kills landfill, Staten Island, New York, USA[J]. Applied Geochemistry, 2000, 15(4): 493 − 500. doi: 10.1016/S0883-2927(99)00063-3
|
[52] |
YEHUDIT H, MIRYAMBAR M, ALAN M, et al. Tracing the sources of sedimentary Cu and Mn ores in the Cambrian Timna Formation, Israel using Pb and Sr isotopes[J]. Journal of Geochemical Exploration, 2017, 178: 67 − 82. doi: 10.1016/j.gexplo.2017.03.016
|
[53] |
GUEGUEN F, STILLE P, GEAGEA M L, et al. Atmospheric pollution in an urban environment by tree bark biomonitoring-Part II:Sr, Nd and Pb isotopic tracing[J]. Chemosphere, 2012, 86(6): 641 − 647. doi: 10.1016/j.chemosphere.2011.11.008
|
[54] |
ARAUJO D F, PONZEVERA E, BRIANT N, et al. Assessment of the metal contamination evolution in the Loire estuary using Cu and Zn stable isotopes and geochemical data in sediments[J]. Marine Pollution Bulletin, 2019, 143: 12 − 23. doi: 10.1016/j.marpolbul.2019.04.034
|
[55] |
马信江, 梁细荣, 涂相林, 等. AGMP-1M阴离子分离Cu, Fe, Zn及其在Fe同位素测定上的应用[J]. 地球化学, 2009, 38(5): 480 − 486. doi: 10.3321/j.issn:0379-1726.2009.05.007
|
[56] |
张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347 − 355.
|
[57] |
王倩, 侯清华, 张婷, 等. 铜同位素测定方法研究进展[J]. 矿物岩石地球化学通报, 2016, 35(3): 497 − 506. doi: 10.3969/j.issn.1007-2802.2016.03.013
|