[1] |
中华人民共和国住房和城乡建设部, 生态环境部. 住房城乡建设部 生态环境部关于印发城市黑臭水体治理攻坚战实施方案的通知[EB/OL]. [2019-09-06]. http://www.mohurd.gov.cn/wjfb/201810/t20181015_237912.html.
|
[2] |
刘晓玲, 徐瑶瑶, 宋晨, 等. 城市黑臭水体治理技术及措施分析[J]. 环境工程学报, 2019, 13(3): 519-529. doi: 10.12030/j.cjee.201812181
|
[3] |
孙韶玲. 水体黑臭演化过程及挥发性硫化物的产生机制初步研究[D]. 北京: 中国科学院大学, 2017.
|
[4] |
王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016, 27(4): 1331-1340.
|
[5] |
HE Z H, HUANG R, LIANG Y H, et al. Index for nitrate dosage calculation on sediment odor control using nitrate-dependent ferrous and sulfide oxidation interactions[J]. Journal of Environmental Management, 2018, 226: 289-297. doi: 10.1016/j.jenvman.2018.08.037
|
[6] |
HE Z H, LONG X X, LI L Y, et al. Temperature response of sulfide/ferrous oxidation and microbial community in anoxic sediments treated with calcium nitrate addition[J]. Journal of Environmental Management, 2017, 191: 209-218. doi: 10.1016/j.jenvman.2017.01.008
|
[7] |
LIU X N, TAO Y, ZHOU K, et al. Effect of water quality improvement on the remediation of river sediment due to the addition of calcium nitrate[J]. Science of the Total Environment, 2017, 575: 887-894. doi: 10.1016/j.scitotenv.2016.09.149
|
[8] |
LIU T Z, YUAN J J, DONG W Y, et al. Effects on inorganic nitrogen compounds release of contaminated sediment treatment with in situ calcium nitrate injection[J]. Environmental Science and Pollution Research, 2015, 22(2): 1250-1260. doi: 10.1007/s11356-014-3421-7
|
[9] |
余光伟, 余绵梓, 种云霄, 等. 投加硝酸钙对城市黑臭河道底泥氮迁移转化的影响机制[J]. 环境工程学报, 2015, 9(8): 82-89.
|
[10] |
张慧妍. 原位注射硝酸钙修复污染底泥过程中无机氮的迁移与转化[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[11] |
MOGHADAM M J, MOAYEDI H, SADEGHI M M, et al. A review of combinations of electrokinetic applications[J]. Environmental Geochemistry and Health, 2016, 38(6): 1217-1227. doi: 10.1007/s10653-016-9795-3
|
[12] |
CANG L, FAN G P, ZHOU D M, et al. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control[J]. Chemosphere, 2013, 90(8): 2326-2331. doi: 10.1016/j.chemosphere.2012.10.062
|
[13] |
PAZOS M, IGLESIAS O, GÓMEZ J, et al. Remediation of contaminated marine sediment using electrokinetic-Fenton technology[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3): 932-937. doi: 10.1016/j.jiec.2012.11.010
|
[14] |
刘钊, 党岩, 田皓中, 等. 外加电势强化厌氧氨氧化工艺处理垃圾焚烧渗沥液短程硝化出水[J]. 环境工程学报, 2019, 13(7): 1670-1677. doi: 10.12030/j.cjee.201902093
|
[15] |
LIN H J, WILLIAMS N, KING A, et al. Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion[J]. Chemical Engineering Journal, 2016, 297: 180-192. doi: 10.1016/j.cej.2016.03.086
|
[16] |
QU B, FAN B, ZHU S K, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6(1): 100-105. doi: 10.1111/1758-2229.12113
|
[17] |
SHU J C, SUN X L, LIU R L, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents[J]. Ecotoxicology and Environmental Safety, 2019, 171: 523-529. doi: 10.1016/j.ecoenv.2019.01.025
|
[18] |
郭迪. 电化学技术去除海水养殖废水中氨氮的研究[D]. 杭州: 浙江大学, 2016.
|
[19] |
宋协法, 边敏, 黄志涛, 等. 电化学氧化法在循环水养殖系统中去除氨氮和亚硝酸盐效果研究[J]. 中国海洋大学学报(自然科学版), 2016, 46(11): 127-135.
|
[20] |
林玉环, 郭明新, 庄岩. 底泥中酸性挥发硫及同步浸提金属的测定[J]. 环境科学学报, 1997, 17(3): 97-102.
|
[21] |
MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. doi: 10.1016/j.apcatb.2016.08.037
|
[22] |
张宁. 电化学阳极氧化硫化物的研究[D]. 南京: 南京理工大学, 2012.
|
[23] |
WANG Y C, LIN H J, HU B. Electrochemical removal of hydrogen sulfide from swine manure[J]. Chemical Engineering Journal, 2019, 356: 210-218. doi: 10.1016/j.cej.2018.08.171
|
[24] |
DING J, ZHAO Q L, JIANG J Q, et al. Electrochemical disinfection and removal of ammonia nitrogen for the reclamation of wastewater treatment plant effluent[J]. Environmental Science and Pollution Research, 2017, 24(6): 5152-5158. doi: 10.1007/s11356-016-6618-0
|
[25] |
LI L, LIU Y. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1010-1016.
|
[26] |
GARCIA-SEGURA S, OCON J D, CHONG M N. Electrochemical oxidation remediation of real wastewater effluents: A review[J]. Process Safety and Environmental Protection, 2018, 113: 48-67. doi: 10.1016/j.psep.2017.09.014
|
[27] |
蒋沁芮, 杨暖, 吴亭亭, 等. 生物电化学脱氮技术研究进展[J]. 应用与环境生物学报, 2018, 24(2): 408-414.
|
[28] |
NANCHARAIAH Y V, VENKATA MOHAN S, LENS P N L. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems[J]. Bioresource Technology, 2016, 215: 173-185. doi: 10.1016/j.biortech.2016.03.129
|
[29] |
胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
|
[30] |
LU P, FENG Q Y, MENG Q J, et al. Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site[J]. Separation and Purification Technology, 2012, 98: 216-220. doi: 10.1016/j.seppur.2012.07.010
|
[31] |
魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(1): 154-160.
|