[1] |
范彬, 胡明, 顾俊, 等. 不同农村污水收集处理方式的经济性比较[J]. 中国给水排水, 2015, 31(14): 20 − 25.
|
[2] |
OJHA V K, DUTTA P, CHAUDHURI A. Identifying hazardousness of sewer pipeline gas mixture using classification methods: A comparative study[J]. Neural Computing and Applications, 2017, 28(6): 1343 − 1354. doi: 10.1007/s00521-016-2443-0
|
[3] |
ZUO Z, CHANG J, LU Z, et al. Hydrogen sulfide generation and emission in urban sanitary sewer in China: What factor plays the critical role?[J]. Environmental Science: Water Research & Technology, 2019, 5(5): 839 − 848.
|
[4] |
邓丰, 王镇鑫, 许伟聪, 等. 城市生活污水排水管道内硫化氢和甲烷产生机制综述[J]. 广东化工, 2012, 39(16): 104 − 105.
|
[5] |
SUN J, HU S, SHARMA K R, et al. Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J]. Applied Environmental Microbiology, 2014, 80(22): 7042 − 7052. doi: 10.1128/AEM.02146-14
|
[6] |
AI T, HE Q, XU J, et al. A conceptual method to simultaneously inhibit methane and hydrogen sulfide production in sewers: The carbon metabolic pathway and microbial community shift[J]. Journal of Environmental Management, 2019, 246: 119 − 127.
|
[7] |
JIANG G, SUN J, SHARMA K R, et al. Corrosion and odor management in sewer systems[J]. Current Opinion in Biotechnology, 2015, 33: 192 − 197. doi: 10.1016/j.copbio.2015.03.007
|
[8] |
VOLLERTSEN J, REVILLA N, HVITVED-JACOBSEN T, et al. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco[J]. Water Environment Research, 2015, 87(11): 1980 − 1989. doi: 10.2175/106143015X14362865226752
|
[9] |
EDWINI-BONSU S, STEFFLER P. Air flow in sanitary sewer conduits due to wastewater drag: A computational fluid dynamics approach[J]. Journal of Environmental Engineering and Science, 2004, 3(5): 331 − 342. doi: 10.1139/s03-072
|
[10] |
张远, 吕淑然, 杨凯, 等. 城市污水管道甲烷爆炸防控对策研究现状及展望[J]. 安全与环境工程, 2015, 22(5): 134 − 138.
|
[11] |
许小冰, 王怡, 王社平, 等. 城市排水管道中有害气体控制的国内外研究现状[J]. 中国给水排水, 2012, 28(14): 9 − 12.
|
[12] |
于玺, 王社平, 高如月, 等. 脉冲通气对污水管道内有害气体的控制[J]. 环境工程学报, 2019, 14(1): 278 − 284.
|
[13] |
王怡, 朱杜洁, 王社平, 等. 投加铁盐对排水管道水质影响及控制有害气体的研究[J]. 中国给水排水, 2012, 28(19): 33 − 36.
|
[14] |
朱雁伯, 王溪蓉, 张礼文, 等. 排水系统中硫化氢的危害及预防措施[J]. 中国给水排水, 2000, 16(9): 45 − 47.
|
[15] |
何世禹. 论硫化氢的危害及其防范措施[J]. 广东科技, 2014, 23(8): 193+178.
|
[16] |
吴迪. 污水管道中硫化氢的形成实验及数学模型[D]. 西安: 西安建筑科技大学, 2016.
|
[17] |
PARANDE A K, RAMSAMY P, ETHIRAJAN S, et al. Deterioration of reinforced concrete in sewer environments[J]. Municipal Engineer, 2006, 159(1): 11 − 20. doi: 10.1680/muen.2006.159.1.11
|
[18] |
TALAIEKHOZANI A, BAGHERI M, GOLI A, et al. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems[J]. Journal of Environmental Management, 2016, 170: 186 − 206.
|
[19] |
李怀正, 张璐璇, 汤霞, 等. 城市排水管道中硫化氢产气原因及影响因素分析[J]. 环境科学与管理, 2012, 37(4): 95 − 97.
|
[20] |
王洪臣, 汪俊妍, 刘秀红, 等. 排水管道中硫酸盐还原菌与产甲烷菌的竞争与调控[J]. 环境工程学报, 2018, 12(7): 1853 − 1864.
|
[21] |
JIANG F, LEUNG D H-W, LI S, et al. A biofilm model for prediction of pollutant transformation in sewers[J]. Water Research, 2009, 43(13): 3187 − 3198. doi: 10.1016/j.watres.2009.04.043
|
[22] |
ITO T, OKABE S, SATOH H, et al. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions[J]. Applied and Environmental Microbiology, 2002, 68(3): 1392 − 1402. doi: 10.1128/AEM.68.3.1392-1402.2002
|
[23] |
SUN J, HU S, SHARMA K R, et al. Impact of reduced water consumption on sulfide and methane production in rising main sewers[J]. Journal of Environmental Management, 2015, 154: 307 − 315. doi: 10.1016/j.jenvman.2015.02.041
|
[24] |
艾海男, 张青, 何强, 等. 重力流排水管道内流态对生物膜菌落结构的影响[J]. 环境工程学报, 2017, 11(5): 2845 − 2850.
|
[25] |
LIU Y, NI B-J, GANIGUÉ R, et al. Sulfide and methane production in sewer sediments[J]. Water Research, 2015, 70: 350 − 359. doi: 10.1016/j.watres.2014.12.019
|
[26] |
SUDARJANTO G, SHARMA K R, GUTIERREZ O, et al. A laboratory assessment of the impact of brewery wastewater discharge on sulfide and methane production in a sewer[J]. Water Science and Technology, 2011, 64(8): 1614 − 1619. doi: 10.2166/wst.2011.733
|
[27] |
VENTURA MATOS R, FERREIRA F, SALDANHA MATOS J. Influence of intermittence and pressure differentials in hydrogen sulfide concentration in a gravity sewer[J]. Water, 2019, 11(9): 1780. doi: 10.3390/w11091780
|
[28] |
闫森, 丁艳萍, 郑才林, 等. 污水管道危害性气体浓度分布模型扩展与验证[J]. 环境工程学报, 2019, 13(5): 1228 − 1236.
|
[29] |
刘艳涛, 卢金锁, 丁超. 污水管道有害性气体分布规律模型研究[J]. 给水排水, 2017, 53(4): 111 − 115.
|
[30] |
MATIAS N, MATOS R V, FERREIRA F, et al. Release of hydrogen sulfide in a sewer system under intermittent flow conditions: the Ericeira case study, in Portugal[J]. Water Science and Technology, 2017, 75(7): 1702 − 1711. doi: 10.2166/wst.2017.040
|
[31] |
ZHANG L, DE SCHRYVER P, DE GUSSEME B, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review[J]. Water Research, 2008, 42(1): 1 − 12.
|
[32] |
RODRÍGUEZ-GÓMEZ L E, DELGADO S, ÁLVAREZ M, et al. Inhibition of sulfide generation in a reclaimed wastewater pipe by nitrate dosage and denitrification kinetics[J]. Water Environment Research, 2005, 77(2): 193 − 198. doi: 10.2175/106143005X41762
|
[33] |
YANG W, VOLLERTSEN J, HVITVED-JACOBSEN T. Anoxic sulfide oxidation in wastewater of sewer networks[J]. Water Science and Technology, 2005, 52(3): 191 − 199. doi: 10.2166/wst.2005.0076
|
[34] |
JIANG G, GUTIERREZ O, SHARMA K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241 − 4251. doi: 10.1016/j.watres.2010.05.030
|
[35] |
WILEY P E. Reduction of hydrogen sulfide gas in a small wastewater collection system using sodium hydroxide[J]. Water Environment Research, 2019, 91(6): 483 − 490. doi: 10.1002/wer.1053
|
[36] |
GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014, 48: 569 − 578. doi: 10.1016/j.watres.2013.10.021
|
[37] |
ZHANG L, KELLER J, YUAN Z. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research, 2009, 43(17): 4123 − 4132. doi: 10.1016/j.watres.2009.06.013
|
[38] |
白建国. 市政排水管道除臭方法研究[J]. 中国给水排水, 2015, 31(23): 87 − 89.
|
[39] |
EIJO-RíO E, PETIT-BOIX A, VILLALBA G, et al. Municipal sewer networks as sources of nitrous oxide, methane and hydrogen sulphide emissions: A review and case studies[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2084 − 2094. doi: 10.1016/j.jece.2015.07.006
|
[40] |
AUGUET O, PIJUAN M, BATISTA J, et al. Changes in microbial biofilm communities during colonization of sewer systems[J]. Applied Environmental Microbiology, 2015, 81(20): 7271 − 7280. doi: 10.1128/AEM.01538-15
|
[41] |
LIU Y, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109 − 118. doi: 10.1016/j.watres.2014.09.047
|
[42] |
GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6): 1421 − 1430.
|
[43] |
JIANG G, SHARMA K R, YUAN Z. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor[J]. Water Research, 2013, 47(5): 1783 − 1792. doi: 10.1016/j.watres.2012.12.036
|
[44] |
李文凯, 郑天龙, 刘俊新. 农村污水管道堵塞成因分析与解决对策[J]. 环境工程学报, 2020, 14(7): 1966 − 1974.
|
[45] |
中华人民共和国住房和城乡建设部. 国家质量监督检验检疫总局. 室外排水设计规范: GB 50014-2006[S]. 北京: 中国计划出版社, 2016.
|
[46] |
XU J, LI M, HE Q, et al. Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer[J]. Environmental Science and Pollution Research, 2017, 24(1): 427 − 435. doi: 10.1007/s11356-016-7710-1
|
[47] |
WANG Y, BOTT C, NERENBERG R. Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes[J]. Water Research, 2016, 100: 184 − 193. doi: 10.1016/j.watres.2016.05.020
|
[48] |
XU J, HE Q, LI H, et al. Modeling of methane formation in gravity sewer system: the impact of microorganism and hydraulic condition[J]. AMB Express, 2018, 8(1): 34. doi: 10.1186/s13568-018-0559-6
|
[49] |
ZAN F, DAI J, JIANG F, et al. Ground food waste discharge to sewer enhances methane gas emission: A lab-scale investigation[J]. Water Research, 2020, 174: 115616. doi: 10.1016/j.watres.2020.115616
|
[50] |
LI W, ZHENG T, MA Y, et al. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815. doi: 10.1016/j.scitotenv.2019.133815
|