[1] WANG S, NAN J, SHI C, et al. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China[J]. Scientific Reports, 2015, 5: 15842. doi: 10.1038/srep15842
[2] WEI L, DUAN J, TAN J, et al. Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing[J]. Science China Earth Sciences, 2015, 58(3): 345 − 355. doi: 10.1007/s11430-014-4986-1
[3] PLATTNER, GIANKASPER. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Journal of Romance Studies, 2014, 4(2): 85 − 88.
[4] BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20(11): 8092 − 8131. doi: 10.1007/s11356-013-2051-9
[5] 孙猛, 徐媛, 刘茂辉, 等. 天津市农田氮肥施用氨排放量估算及分布特征分析[J]. 中国生态农业学报, 2016, 24(10): 1364 − 1370.
[6] 邹娟, 胡学玉, 张阳阳, 等. 不同地表条件下生物炭对土壤氨挥发的影响[J]. 环境科学, 2018, 39(1): 348 − 354.
[7] 中华人民共和国国家统计局. 农村经济持续发展乡村振兴迈出大步—新中国成立70周年经济社会发展成就系列报告之十三[R/OL]. (2019-08-07)[2020-01-12]. http://www.stats.gov.cn/tjsj/zxfb/201908/t20190807_1689636.html.
[8] JU X T, ZHANG C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review[J]. Journal of Integrative Agriculture, 2017, 16(12): 2848 − 2862. doi: 10.1016/S2095-3119(17)61743-X
[9] ZHANG Y, DORE A J, MA L, et al. Agricultural ammonia volatilizations inventory and spatial distribution in the North China Plain[J]. Environment Pollution, 2010, 158(2): 490 − 501. doi: 10.1016/j.envpol.2009.08.033
[10] 徐京磐. 化肥产业发展形势浅析[J]. 氮肥技术, 2017, 37(5): 1 − 15.
[11] 张美双, 栾胜基. NARSES模型在我国种植业氮肥施用氨排放估算中的应用研究[J]. 安徽农业科学, 2009, 37(8): 3583 − 3586. doi: 10.3969/j.issn.0517-6611.2009.08.112
[12] 孙莹莹, 徐绍辉. 不同pH值和离子强度下土壤Zn2+/Cd2+/NH4+的运移特征[J]. 农业工程学报, 2013, 29(12): 218 − 227. doi: 10.3969/j.issn.1002-6819.2013.12.028
[13] SAN FRANCISCO S, URRUTIA O, MARTIN V, et al. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching[J]. Journal of the Science of Food and Agriculture, 2011, 91(9): 1569 − 1575. doi: 10.1002/jsfa.4349
[14] 邓美华, 尹斌, 张绍林, 等. 不同施氮量和施氮方式对稻田氨挥发损失的影响[J]. 土壤, 2006, 38(3): 263 − 269. doi: 10.3321/j.issn:0253-9829.2006.03.005
[15] ZAMAN M, BLENNERHASSETT J D. Effects of the different rates of urease and nitrification inhibitors on gaseous volatilizations of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system[J]. Agriculture, Ecosystems & Environment, 2010, 136(3/4): 236 − 246.
[16] ROCHETTE P, ANGERS D A, CHANTIGNY M H, et al. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands[J]. Nutrient Cycling in Agroecosystems, 2009, 84(1): 71 − 80. doi: 10.1007/s10705-008-9227-6
[17] 黄灿, 何清明, 邬红东, 等. 真菌异化硝酸盐还原机理的研究进展[J]. 微生物学通报, 2009, 36(7): 1052 − 1057.
[18] 李小平, 方涛, 敖鸿毅, 等. 东湖沉积物中DNRA活性和硝酸盐还原菌的垂向分布[J]. 中国环境科学, 2010, 30(2): 228 − 232.
[19] 殷士学, 沈其荣. 缺氧土壤中硝态氮还原菌的生理生化特征[J]. 土壤学报, 2003, 40(4): 624 − 630. doi: 10.3321/j.issn:0564-3929.2003.04.021
[20] 陶怡乐, 温东辉. 细菌硝酸盐异化还原成铵过程及其在河口生态系统中的潜在地位与影响[J]. 微生物学通报, 2016, 43(1): 172 − 181.
[21] YANG X Q, LIAN Y L, YAN Q Y, et al. Microbially-driven nitrogen cycling in coastal ecosystems[J]. Acta Microbiologica Sinica, 2018, 58(4): 633 − 648.
[22] LU W, RIYA S, ZHOU S, et al. In Situ Dissimilatory Nitrate Reduction to Ammonium in a Paddy Soil Fertilized with Liquid Cattle Waste[J]. Pedosphere, 2012, 22(3): 314 − 321. doi: 10.1016/S1002-0160(12)60018-6
[23] CHEN T, LI J F, ZOU Z J, et al. Effects of redox potential and ph on the effect of dissimilatory nitrate reduction to ammonium in bioretention system[J]. Science Technology & Engineering, 2018, 18(4): 368 − 373.
[24] ZHANG J, LAN T, MULLER C, et al. Dissimilatory nitrate reduction to ammonium (DNRA) plays an important role in soil nitrogen conservation in neutral and alkaline but not acidic rice soil[J]. Journal of Soils and Sediments, 2014, 15(3): 523 − 531.
[25] SCHMID C S, RICHARDSON D J, BAGGS E M. Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils[J]. Soil Biology and Biochemistry, 2011, 43(7): 1607 − 1611. doi: 10.1016/j.soilbio.2011.02.015
[26] WANG X, XU S J, WU S H, et al. Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China[J]. Journal of Environmental Sciences, 2018, 66(4): 199.
[27] 黄向东, 韩志英, 石德智, 等. 畜禽粪便堆肥过程中氮素的损失与控制[J]. 应用生态学报, 2010, 21(1): 247 − 254.
[28] HADEN V R, XIANG J, PENG S, et al. Ammonia toxicity in aerobic rice: use of soil properties to predict ammonia volatilization following urea application and the adverse effects on germination[J]. European Journal of Soil Science, 2011, 62(4): 551 − 559. doi: 10.1111/j.1365-2389.2010.01346.x
[29] LI M, WANG Y, ADELI A, et al. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa[J]. Field Crops Research, 2018, 218: 115 − 125. doi: 10.1016/j.fcr.2018.01.011
[30] 龚巍巍, 张宜升, 何凌燕, 等. 菜地氨挥发损失及影响因素原位研究[J]. 环境科学, 2011, 32(2): 345 − 350.
[31] ABALOS D, JEFFERY S, SANZ-COBENA A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture Ecosystems and Environment, 2014, 189: 136 − 144. doi: 10.1016/j.agee.2014.03.036
[32] SOMMER S G, OLESEN J E, CHRISTENSEN B T. Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry[J]. The Journal of Agricultural Science, 1991, 117(1): 91 − 100. doi: 10.1017/S0021859600079016
[33] YAN L, ZHANG Z, CHEN Y, et al. Effect of water and temperature on ammonia volatilization of maize straw returning[J]. Toxicological & Environmental Chemistry, 2016, 98(5-6): 638 − 647.
[34] SOMMER S G, SCHJOERRING J K, DENMEAD O T. Ammonia emission from mineral fertilizer sand fertilized crops[J]. Advances in Agronomy, 2004, 82: 557 − 622. doi: 10.1016/S0065-2113(03)82008-4
[35] 张承先, 武雪萍, 吴会军, 等. 不同土壤水分条件下华北冬小麦基施不同氮肥的氨挥发研究[J]. 中国土壤与肥料, 2008(5): 28 − 32. doi: 10.3969/j.issn.1673-6257.2008.05.006
[36] GAO P C, ZHANG Y P. Research on relationship between volatilization of ammonia and evaporation of soil water[J]. Journal of Northwest Science, 2006, 29(6): 22 − 26.
[37] YAO Y, ZHANG M, TIAN Y, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2017, 218: 254 − 266.
[38] LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central china[J]. Field Crops Research, 2015, 184: 80 − 90. doi: 10.1016/j.fcr.2015.09.011
[39] MIAH MIAH M A, GAIHRE Y K, HUNTER G, et al. Fertilizer deep placement increases rice production: evidence from farmers’ fields in Southern Bangladesh[J]. Agronomy Journal, 2016, 108(2): 805. doi: 10.2134/agronj2015.0170
[40] 林新坚, 陈济琛, 郑时利, 等. 水稻土中脲酶产生菌、脲酶活性及尿素利用率[J]. 福建农业学报, 1992(1): 36 − 40.
[41] 山楠, 赵同科, 毕晓庆, 等. 不同施氮水平下小麦田氨挥发规律研究[J]. 农业环境科学学报, 2014, 33(9): 1858 − 1865. doi: 10.11654/jaes.2014.09.026
[42] WANG X, ZHOU W, LIANG G, et al. The fate of 15N-labelled urea in an alkaline calcareous soil under different N application rates and N splits[J]. Nutrient Cycling in Agroecosystems, 2016, 106(3): 311 − 324. doi: 10.1007/s10705-016-9806-x
[43] WANG D, XU Z, ZHAO J, et al. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2011, 61: 681 − 692.
[44] CAO Y S, YIN B. Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate[J]. Agriculture Ecosystem Environment, 2015, 202: 1 − 7. doi: 10.1016/j.agee.2015.01.001
[45] MA B L, WU T Y, TREMBLAY N, et al. On-farm assessment of the amount and timing of nitrogen fertilizer on ammonia volatilization[J]. Agronomy Journal, 2010, 102(1): 134 − 144. doi: 10.2134/agronj2009.0021
[46] ROCHETTE P, ANGERS D A, CHANTIGNY M H, et al. Ammonia volatilization and nitrogen retention: How deep to incorporate urea[J]. Journal of Environment Quality, 2013, 42(6): 1635 − 1642. doi: 10.2134/jeq2013.05.0192
[47] 杨淑莉, 朱安宁, 张佳宝, 等. 不同施氮量和施氮方式下田间氨挥发损失及其影响因素[J]. 干旱区研究, 2010(3): 415 − 421.
[48] WANG H Y, ZHOU J M. Root-zone fertilization-a key and necessary approach to improve fertilizer use efficiency and reduce non-point source pollution from the cropland[J]. Soils, 2013, 45(5): 785 − 790.
[49] CAI Z C, YAN X Y, ZHU Z L. A great challenge to solve nitrogen pollution from intensive agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1 − 6.
[50] XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917 − 1925. doi: 10.1111/gcb.13455
[51] DU T S, KANG S Z, SUN J S, et al. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China[J]. Agriculture Water Management, 2010, 97: 66 − 74. doi: 10.1016/j.agwat.2009.08.011
[52] WANG G L, YE Y L, CHEN X P, et al. Determining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspects[J]. Biogeosciences, 2014, 11: 3031 − 3041. doi: 10.5194/bg-11-3031-2014
[53] CUI Z L, CHEN X P, ZHANG F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China[J]. AMBIO, 2010, 39: 376 − 384. doi: 10.1007/s13280-010-0076-6
[54] CUI Z, CHEN X, MIAO Y, et al. On-Farm Evaluation of the Improved Soil N-based Nitrogen Management for Summer Maize in North China Plain[J]. Agronomy Journal, 2008, 100(3): 517 − 525. doi: 10.2134/agronj2007.0194
[55] 周丽萍, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1449 − 1457. doi: 10.11674/zwyf.16039
[56] 于淑芳, 杨力, 张民, 等. 控释肥对小麦玉米生物学性状和土壤硝酸盐积累的影响[J]. 农业环境科学学报, 2010, 29(1): 128 − 133.
[57] 刘诗璇, 陈松岭, 蒋一飞, 等. 控释氮肥与普通氮肥配施对东北春玉米氮素利用及土壤养分有效性的影响[J]. 生态环境学报, 2019, 28(5): 939 − 947.
[58] LINQUIST B A, LIU L, VAN KESSEL C, et al. Enhanced efficiency nitrogen fertilizers for rice systems: meta-analysis of yield and nitrogen uptake[J]. Field Crops Research, 2013, 154: 246 − 254. doi: 10.1016/j.fcr.2013.08.014
[59] HUANG S, LV W, BLOSZIES S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis[J]. Field Crops Research, 2016, 192: 118 − 125. doi: 10.1016/j.fcr.2016.04.023
[60] HUDA A, GAIHRE Y K, ISLAM M R, et al. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping system[J]. Nutrient Cycling in Agroecosystems, 2016, 104: 53 − 66. doi: 10.1007/s10705-015-9758-6
[61] ISLAM S M M, GAIHRE Y K, BISWAS J C, et al. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: fate of nitrogen and grain yield[J]. Agricultural Water Management, 2018, 196: 144 − 153. doi: 10.1016/j.agwat.2017.11.002
[62] LIU X, WANG H, ZHOU J, et al. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China[J]. PLOS ONE, 2016, 11(11): e0166002. doi: 10.1371/journal.pone.0166002
[63] NKEBIWE P M, WEINMANN M, BAR-TAL A, et al. Fertilizer placement to improve crop nutrient acquisition and yield: a review and meta-analysis[J]. Field Crops Research, 2016, 196: 389 − 401. doi: 10.1016/j.fcr.2016.07.018
[64] PENG Z P, MEN M X, XUE S C, et al. Effects of humic acid(HA) compound fertilizer on the conversion of soil nutrient and activities of soil enzyme[J]. Journal of Agricultural University of Hebei, 2005, 28(4): 1 − 4.
[65] FRENEY J R, KEERTHISINGHE D G, PHONGPAN S, et a1. Effect of urease, nitrification and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand[J]. Fertilizer Research, 1995, 40: 225 − 233. doi: 10.1007/BF00750469
[66] NASTRI A, TODERI G, BERNTI, et al. Ammonia volatilization and yield response from urea applied to wheat with urease (NBPT) and nitrification (DCD) inhibitors[J]. Agrochimica, 2000, 5−6: 231 − 238.
[67] CANTU R R, AITA C, DONEDA A, et al. Alternatives to regular urea for abating N losses in lettuce production under sub-tropical climate[J]. Biology and Fertility of Soils, 2017, 53(6): 589 − 599. doi: 10.1007/s00374-017-1202-4
[68] SUBEDI R, KAMMANN C, PELISSETTI S, et al. Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry[J]. European Journal of Soil Science, 2015, 66: 1044 − 1053. doi: 10.1111/ejss.12302
[69] 王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013(5): 768 − 780. doi: 10.7524/j.issn.0254-6108.2013.05.008
[70] TAGHIZADEH T A, CLOUGH T J, SHERLOCK R R, et al. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability[J]. Plant and Soil, 2012, 353(1–2): 73 − 84. doi: 10.1007/s11104-011-1010-9
[71] 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19): 5998 − 6011.
[72] 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68 − 79. doi: 10.11867/j.issn.1001-8166.2014.01-0068
[73] 程效义, 刘晓琳, 孟军, 等. 生物炭对棕壤NH3挥发、N2O排放及氮肥利用效率的影响[J]. 农业环境科学学报, 2016, 35(04): 801 − 807.
[74] CALVO P, NELSON L, KLOEPPER J W. Agricultural uses of plant biostimulants[J]. Plant and Soil, 2014, 383: 3 − 41. doi: 10.1007/s11104-014-2131-8
[75] 程亮, 张保林, 王杰, 等. 腐植酸肥料的研究进展[J]. 中国土壤与肥料, 2011(5): 1 − 6. doi: 10.3969/j.issn.1673-6257.2011.05.001
[76] CANELLAS L P, OLIVARES F L, AGUIAR N O, et al. Humic and fulvic acids as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196: 15 − 27. doi: 10.1016/j.scienta.2015.09.013
[77] LIU D, HUANG Z B, MEN S H, et al. Nitrogen and phosphorus adsorption in aqueous solutions by humic acids from weathered coal: isotherm, kinetic, and thermodynamic analysis[J]. Water Science and Technology, 2019, 79(11).
[78] 范慧娟. 浅议腐植酸肥料在改良土壤及提高肥料利用率中的作用[J]. 中国农业信息, 2014(1): 105.
[79] 庄振东, 李絮花, 张健, 等. 冬小麦-夏玉米轮作制度下腐植酸氮肥去向与平衡[J]. 水土保持学报, 2016(6): 201 − 206.
[80] CIHLAR Z, VOJTOVA L, CONTE P, et al. Hydration and water holding properties of cross linked lignite humic acids[J]. Geoderma, 2014, 230: 151 − 160.
[81] SUGIER D, KOODZIEJ B, BIELINSKA E. The effect of leonardite application on Arnica montana L. yielding and chosen chemical properties and enzymatic activity of the soil[J]. Journal of Geochemical Exploration, 2013, 129: 76 − 81. doi: 10.1016/j.gexplo.2012.10.013
[82] REEZA A A, AHMED O H, MAJID N M A, et al. Reducing ammonia loss from urea by mixing with humic and fulvic acids isolated from coal[J]. American Journal of Environmental Sciences, 2009, 5(3): 420 − 426. doi: 10.3844/ajessp.2009.420.426
[83] 刘增兵, 赵秉强, 林治安. 腐植酸尿素氨挥发特性及影响因素[J]. 植物营养与肥料学报, 2010, 16(1): 208 − 213. doi: 10.11674/zwyf.2010.0131
[84] 柯超, 张世伟, 马筠, 等. 纳米碳腐植酸保水肥对柑橘田土壤细菌群落结构及柑橘生长的影响[J]. 中国农学通报, 2017, 34(21): 108 − 114. doi: 10.11924/j.issn.1000-6850.casb17030075
[85] YIN S X, CHEN D, CHEN L M, et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biology & Bio-chemistry, 2002, 34(8): 1131 − 1137.
[86] 汪霞. 微生物菌剂对碱性土壤氨挥发的控制及其机理研究[D]. 合肥: 中国科学技术大学, 2017.
[87] INSELSBACHER E, HINKO-NAJERA U N, STANGE F C, et al. Short-term competition between crop plants and soil microbes for inorganic N fertilizer[J]. Soil Biology and Biochemistry, 2010, 42(2): 360 − 372. doi: 10.1016/j.soilbio.2009.11.019