[1] WANG Y, SONG H, CHEN J, et al. A novel solar photo-Fenton system with self-synthesizing H2O2: Enhanced photo-induced catalytic performances and mechanism insights[J]. Applied Surface Science, 2020, 512: 145650. doi: 10.1016/j.apsusc.2020.145650
[2] RODRIGO M A, OTURAN N, OTURAN M A. Electrochemically assisted remediation of pesticides in soils and water: A review[J]. Chemical Reviews, 2014, 114(17): 8720-8745. doi: 10.1021/cr500077e
[3] QIU B, XING M, ZHANG J. Recent advances in three-dimensional graphene based materials for catalysis applications[J]. Chemical Society Reviews, 2018, 47(6): 2165-2216. doi: 10.1039/C7CS00904F
[4] RAFIGH S M, RAHIMPOUR S A. Melanoidin removal from molasses wastewater using graphene oxide nanosheets[J]. Separation Science and Technology, 2020, 55(13): 2281-2293. doi: 10.1080/01496395.2019.1626424
[5] SHAALAN N M, HAMAD D, ABDEL-LATIEF A Y, et al. Preparation of quantum size of tin oxide: Structural and physical characterization[J]. Progress in Natural Science: Materials International, 2016, 26(2): 145-151. doi: 10.1016/j.pnsc.2016.03.002
[6] SONG Z, QUAN F, XU Y, et al. Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione[J]. Carbon, 2016, 104: 169-178. doi: 10.1016/j.carbon.2016.04.003
[7] ZHANG X, WANG F, HUANG H, et al. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light[J]. Nanoscale, 2013, 5(6): 2274-2278. doi: 10.1039/c3nr34142a
[8] HUANG Q, HU S, ZHANG H, et al. Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine[J]. Analyst, 2013, 138(18): 5417-5423. doi: 10.1039/c3an00510k
[9] SHANKAR S S, SHEREEMA R M, RAMACHANDRAN V, et al. Carbon quantum dot-modified carbon paste electrode-based sensor for selective and sensitive determination of adrenaline[J]. ACS Omega, 2019, 4(4): 7903-7910. doi: 10.1021/acsomega.9b00230
[10] WEI Y, XU Z, WANG S, et al. One-step preparation of carbon quantum dots-reduced graphene oxide nanocomposite-modified glass carbon electrode for the simultaneous detection of ascorbic acid, dopamine, and uric acid[J]. Ionics, 2020, 26(11): 5817-5828. doi: 10.1007/s11581-020-03703-5
[11] CHOI D, HAM S, JANG D J, et al. Visible-light photocatalytic reduction of Cr(VI) via carbon quantum dots-decorated TiO2 nanocomposites[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1-8. doi: 10.1016/j.jece.2017.11.065
[12] LI J, YUN X, HU Z, et al. Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(46): 26311-26325. doi: 10.1039/C9TA08151H
[13] SAMANTARA A K, SAHU S, GHOSH A, et al. Sandwiched graphene with nitrogen, sulphur co-doped CQDs: An efficient metal-free material for energy storage and conversion applications[J]. Journal of Materials Chemistry A, 2015, 3(33): 16961-16970. doi: 10.1039/C5TA03376D
[14] ALGARRA M, GONZÁLEZ-CALABUIG A, RADOTIĆ K, et al. Enhanced electrochemical response of carbon quantum dot modified electrodes[J]. Talanta, 2018, 178: 679-685. doi: 10.1016/j.talanta.2017.09.082
[15] GRZEGORZEWSKA A K, HRABIA A, KOWALIK K, et al. In vitro effects of PNP and PNMC on apoptosis and proliferation in the hen ovarian stroma and prehierarchal follicles[J]. Acta Histochemica, 2020, 122(1): 151463. doi: 10.1016/j.acthis.2019.151463
[16] 俱玉云. 氧化石墨烯、碳量子点复合纳米材料在环境污染物催化降解、生物样品检测方面的应用[D]. 兰州: 兰州大学, 2015.
[17] 王莉, 吕婷, 阮枫萍, 等. 水热法制备的碳量子点[J]. 发光学报, 2014, 35(6): 707-708.
[18] WANG A, QU J, LIU H, et al. Mineralization of an azo dye acid red 14 by photoelectro-Fenton process using an activated carbon fiber cathode[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 393-399.
[19] PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemistry of Materials, 2009, 21(23): 5563-5565. doi: 10.1021/cm901593y
[20] RAY S C, SAHA A, JANA N R, et al. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application[J]. Journal of Physical Chemistry C, 2009, 113(43): 18546-18551. doi: 10.1021/jp905912n
[21] HU Y, YANG J, JIA L, et al. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors[J]. Carbon, 2015, 93: 999-1007. doi: 10.1016/j.carbon.2015.06.018
[22] 李晓峰, 周明, 龚爱华, 等. 氮掺杂碳量子点的合成, 表征及其在细胞成像中的应用[J]. 材料科学与工程学报, 2015, 33(1): 41-45.
[23] KULANDAIVALU T, RASHID S A, SABLI N, et al. Visible light assisted photocatalytic reduction of CO2 to ethane using CQDs/Cu2O nanocomposite photocatalyst[J]. Diamond and Related Materials, 2019, 91: 64-73. doi: 10.1016/j.diamond.2018.11.002
[24] NI D, SHANG Q, GUO T, et al. An effective strategy to improve dynamic and cyclic stability of HQC/TiO2 photocatalyst by introducing carbon quantum dots or iron ion via metal-complex[J]. Applied Catalysis B: Environmental, 2017, 210: 504-512. doi: 10.1016/j.apcatb.2017.04.019
[25] KUMARI A, KUMAR A, SAHU S K, et al. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging[J]. Sensors and Actuators B: Chemical, 2018, 254: 197-205. doi: 10.1016/j.snb.2017.07.075
[26] ARUMUGHAM T, ALAGUMUTHU M, AMIMODU R G, et al. A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications[J]. Sustainable Materials and Technologies, 2020, 23: e00138. doi: 10.1016/j.susmat.2019.e00138
[27] LEI C W, HSIEH M L, LIU W R. A facile approach to synthesize carbon quantum dots with pH-dependent properties[J]. Dyes and Pigments, 2019, 169: 73-80. doi: 10.1016/j.dyepig.2019.05.014
[28] BEHZADI F, SAIEVAR-IRANIZAD E, BAYAT A. One step synthesis of graphene quantum dots, graphene nanosheets and carbon nanospheres: Investigation of photoluminescence properties[J]. Materials Research Express, 2019, 6(10): 105615. doi: 10.1088/2053-1591/ab3dd5
[29] HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups[J]. Chemical Communications, 2012, 48(33): 3984-3986. doi: 10.1039/c2cc30188a
[30] CHOUDHARI A, BHANVASE B A, SAHARAN V K, et al. Sonochemical preparation and characterization of rGO/SnO2 nanocomposite: Electrochemical and gas sensing performance[J]. Ceramics International, 2020, 46(8): 11290-11296. doi: 10.1016/j.ceramint.2020.01.156
[31] HE Y, MA Y, MENG J, et al. Dual electrochemical catalysis of Bi2Mo3O12/Ti cathode for hydrogen peroxide production in electro-Fenton system[J]. Journal of Catalysis, 2019, 373: 297-305. doi: 10.1016/j.jcat.2019.04.005
[32] XIONG Z, LAI B, YANG P, et al. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration[J]. Journal of Hazardous Materials, 2015, 297: 261-268. doi: 10.1016/j.jhazmat.2015.05.006
[33] 黄卫华, 杨丹, 阮界冰, 等. 光催化与Fenton试剂对硝基苯酚降解的研究[J]. 环境科学技术, 2010, 33(12): 71-75.