[1] |
张统,李志颖,董春宏,等. 我国工业废水处理现状及污染防治对策[J]. 给水排水, 2020, 56(24): 1-3.
|
[2] |
JANG D, HWANG Y, SHIN H, et al. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors[J]. Bioresource Technology, 2013, 141: 50-56. doi: 10.1016/j.biortech.2013.02.062
|
[3] |
LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater: A literature review[J]. Water Research, 2006, 40(20): 3671-3682. doi: 10.1016/j.watres.2006.08.027
|
[4] |
PANSWAD T, ANAN C. Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J]. Water Research, 1999, 33(5): 1172.
|
[5] |
LIN Y, ZHONG L, DOU S, et al. Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption[J]. Environment International, 2019, 128: 37-45. doi: 10.1016/j.envint.2019.04.019
|
[6] |
TIAN S, JIANG P, PING N, et al. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite[J]. Chemical Engineering Journal, 2009, 151(1/2/3): 141-148. doi: 10.1016/j.cej.2009.02.006
|
[7] |
李肖琳, 谢陈鑫, 秦微, 等. 膜分离-光电催化深度处理高盐含聚污水[J]. 环境工程学报, 2016, 10(8): 4141-4146. doi: 10.12030/j.cjee.201503192
|
[8] |
PIERRE B, JEAN-PAUL A. The biological degradation of cellulose[J]. FEMS Microbiology Reviews, 1994(1): 1.
|
[9] |
HUANG J, DAI Y, SINGEWALD K, et al. Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions[J]. Chemical Engineering Journal, 2019, 370: 906-915. doi: 10.1016/j.cej.2019.03.238
|
[10] |
ZHANG H C, LEMLEY A T. Reaction mechanism and kinetic modeling of DEET degradation by flow-through anodic Fenton treatment (FAFT)[J]. Environmental Science & Technology, 2006, 40(14): 4488-4494.
|
[11] |
GHAUCH A, TUQAN A M, KIBBI N, et al. Methylene blue discoloration by heated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2012, 213: 259-271. doi: 10.1016/j.cej.2012.09.122
|
[12] |
KABDASLI I, ECER Ç, OLMEZ-HANCI T, et al. A comparative study of ·OH and $ {\rm{SO}}_4^{{ \cdot ^ - }} $ based AOPs for the degradation of non-ionic surfactant Brij30[J]. Water Science & Technology, 2015, 72(2): 194-202.
|
[13] |
RUBIO-CLEMENTE A, TORRES-PALMA R A, PE UELA G A. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review[J]. Science of the Total Environment, 2014, 478: 201-225. doi: 10.1016/j.scitotenv.2013.12.126
|
[14] |
GALBIČKOVÁ B, BLINOVÁ L, SOLDÁN M. Using of AOP Process for Phenol Removal from Wastewater[[J]. Environmental Engineering, 2013, 864-867: 1690-1693.
|
[15] |
GHAUCH A, BAYDOUN H, DERMESROPIAN P. Degradation of aqueous carbamazepine in ultrasonic/Fe0/H2O2 systems[J]. Chemical Engineering Journal, 2011, 172(1): 18-27. doi: 10.1016/j.cej.2011.04.002
|
[16] |
CHAN K H, CHU W. Atrazine removal by catalytic oxidation processes with or without UV irradiation: Part II: An analysis of the reaction mechanisms using LC/ESI-tandem mass spectrometry[J]. Applied Catalysis B: Environmental, 2005, 58(3/4): 157-163.
|
[17] |
BABUPONNUSAMI A, MUTHUKUMAR K. Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes[J]. Chemical Engineering Journal, 2012, 183: 1-9. doi: 10.1016/j.cej.2011.12.010
|
[18] |
KARCI A, ARSLAN-ALATON I, OLMEZ-HANCI T, et al. Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: Oxidation products and toxicity evolution[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2012, 230(1): 65-73.
|
[19] |
MÉNDEZ-DÍAZ J, SÁNCHEZ-POLO M, RIVERA-UTRILLA J, et al. Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals[J]. Chemical Engineering Journal, 2010, 163(3): 300-306. doi: 10.1016/j.cej.2010.08.002
|
[20] |
杨伟, 袁珊珊, 宋震宇, 等. Fenton氧化与活性炭吸附深度处理高含盐难降解海上采油废水的研究[J]. 应用化工, 2014, 43(11): 2060-2064.
|
[21] |
时钰, 杨晓芳, 杨招艺, 等. 可用于去除高盐废水中有机污染物的混凝-Fenton氧化联合工艺[J]. 环境工程学报, 2017, 11(9): 4958-4964. doi: 10.12030/j.cjee.201701090
|
[22] |
李根. 催化臭氧氧化技术在煤化工废水深度处理中的应用研究[D]. 武汉: 武汉科技大学, 2018.
|
[23] |
任明, 孙淑英, 金艳, 等. 催化臭氧氧化法处理煤化工高盐废水[J]. 环境工程, 2018, 36(8): 54-59.
|
[24] |
耿翠玉, 杨映, 乔瑞平, 等. O3/H2O2协同氧化石油化工行业反渗透浓水[J]. 环境污染与防治, 2016, 38(11): 56-59.
|
[25] |
王少雄, 俞彬, 张彦海, 等. 臭氧及双氧水处理高盐有机废水的工程应用[J]. 工业用水与废水, 2018, 49(5): 74-76. doi: 10.3969/j.issn.1009-2455.2018.05.018
|
[26] |
李春立. 蒸发-过硫酸盐高级氧化法一体化技术处理高盐挥发性有机废水[D]. 新乡: 河南师范大学, 2017.
|
[27] |
陈希, 纪志永, 黄智辉, 等. 电化学协同过硫酸盐氧化法处理含盐有机废水[J]. 化工进展, 2019, 38(12): 5572-5577.
|
[28] |
GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348. doi: 10.1016/j.watres.2009.03.010
|
[29] |
YANG Y, PIGNATELLO J J, MA J, et al. Effect of matrix components on UV/H2O2 and ${\rm{UV}}/{{\rm{S}}_2}{\rm{O}}_8^{2 - } $ advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities[J]. Water Research, 2016, 89: 192-200. doi: 10.1016/j.watres.2015.11.049
|
[30] |
OH W, DONG Z, LIM T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
|
[31] |
PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science & Technology, 2006, 36(1): 1-84.
|
[32] |
GREBEI J E, PIGNATELLO J I, MITCH W A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science & Technology, 2010, 44(17): 6822-6828.
|
[33] |
YU X, BAO Z, BARKER J R. Free radical reactions involving Cl·, ${\rm{Cl}}_2^{{ \cdot ^ - }}$, and $ {\rm{SO}}_4^{{ \cdot ^ - }} $ in the 248 nm photolysis of aqueous solutions containing ${{\rm{S}}_2}{\rm{O}}_8^{2 - }$ and Cl−[J]. The Journal of Physical Chemistry A, 2004, 108(2): 295-308. doi: 10.1021/jp036211i
|
[34] |
BUXTON G V, BYDDER M, ARTHUR SALMON G. The reactivity of chlorine atoms in aqueous solution Part II. The equilibrium ${\rm{SO}}_4^ - $+Cl-ClNsbd+ ${\rm{SO}}_4^{2 - }$[J]. Physical Chemistry Chemical Physics, 1999, 1(2): 269-273. doi: 10.1039/a807808d
|
[35] |
YU X Y. Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions[J]. Journal of Physical & Chemical Reference Data, 2004, 33(3): 747-763.
|
[36] |
YU X Y, BARKER J R. Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism[J]. Journal of Physical Chemistry A, 2003, 107(9): 1313-1324. doi: 10.1021/jp0266648
|
[37] |
YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.
|
[38] |
XIE W, DONG W, KONG D, et al. Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides[J]. Chemosphere, 2016, 154: 613-619. doi: 10.1016/j.chemosphere.2016.04.025
|
[39] |
袁瑞霞. 基于自由基反应的高盐染料废水降解有机卤代物AOX生成机制研究[D]. 上海: 东华大学, 2012.
|
[40] |
TONY M A, ZHAO Y Q, EL-SHERBINY M F. Fenton and Fenton-like AOPs for alum sludge conditioning: Effectiveness comparison with different Fe2+ and Fe3+ salts[J]. Chemical Engineering Communications, 2010, 198(3): 442-452. doi: 10.1080/00986445.2010.520235
|
[41] |
WANG N, ZHENG T, ZHANG G, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016
|
[42] |
魏健, 何锦垚, 宋永会, 等. 臭氧催化氧化-BAF深度处理抗生素废水效能及微生物群落结构分析[J]. 环境科学学报, 2020, 40(6): 2090-2100.
|
[43] |
MIKLOS D B, HARTL R, MICHEL P, et al. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents[J]. Water Research, 2018, 136: 169-179. doi: 10.1016/j.watres.2018.02.044
|
[44] |
LI Z, LIU F, DING Y, et al. Preparation and properties of Cu-Ni bimetallic oxide catalyst supported on activated carbon for microwave assisted catalytic wet hydrogen peroxide oxidation for biologically pretreated coal chemical industry wastewater treatment[J]. Chemosphere, 2019, 214: 17-24. doi: 10.1016/j.chemosphere.2018.09.098
|
[45] |
RAHDAR S, IGWEGBE C A, GHASEMI M, et al. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2)[J]. MethodsX, 2019, 6: 492-499. doi: 10.1016/j.mex.2019.02.033
|
[46] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·H/·OH) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
|
[47] |
GOLDSTONE J V, PULLIN M J, BERTILSSON S, et al. Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates[J]. Environmental Science & Technology, 2002, 36(3): 364-372.
|
[48] |
ISSE A A, LIN C Y, COOTE M L, et al. Estimation of standard reduction potentials of halogen atoms and alkyl halides[J]. The Journal of Physical Chemistry B, 2011, 115(4): 678-684. doi: 10.1021/jp109613t
|
[49] |
ERSHOV B G, KELM M, GORDEEV A V, et al. A pulse radiolysis study of the oxidation of Br− by ${\rm{Cl}}_2^{{ \cdot ^ - }}$ in aqueous solution: Formation and properties of ClBr·−[J]. Physical Chemistry Chemical Physics, 2002, 4(10): 1872-1875. doi: 10.1039/b110362h
|
[50] |
ZHANG W B, XIAO X M, AN T C, et al. Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process[J]. Journal of Chemical Technology & Biotechnology, 2003, 78: 788-794.
|
[51] |
王广生, 付冬彬, 刘义青, 等. UV/ ${\rm{NO}}_3^ - $光化学降解水中的磺胺甲恶唑[J]. 环境科学学报, 2020, 40(4): 1234-1241.
|
[52] |
许入义, 李孟, 唐建伟, 等. 光电催化氧化体系降解苯胺类污染物的同步耦合反应机制研究[J]. 环境科学学报, 2019, 39(8): 2525-2534.
|
[53] |
邬莎娜, 孙贤波, 刘勇弟, 等. Fenton法处理DMF废水及无机阴离子对反应的影响[J]. 华东理工大学学报(自然科学版), 2017, 43(1): 70-75.
|
[54] |
吴广宇, 袁向娟, 徐海明, 等. UV/Fenton-Fe0降解水中阿特拉津动力学及影响因素[J]. 水处理技术, 2017, 43(7): 32-38.
|
[55] |
BOUTITI A, ZOUAGHI R, BENDJABEUR S E, et al. Photodegradation of 1-hexyl-3-methylimidazolium by UV/H2O2 and UV/TiO2: Influence of pH and chloride[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2016, 336: 164-169.
|
[56] |
PIGNATELLO J J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide[J]. Environmental Science & Technology, 1992, 26(5): 944-951.
|
[57] |
KIWI J, LOPEZ A, NADTOCHENKO V. Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl−)[J]. Environmental Science & Technology, 2000, 34(11): 2162-2168.
|
[58] |
HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
|
[59] |
WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
|
[60] |
CHEN L, HU X, CAI T, et al. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084
|
[61] |
ZHANG R C, SUN P Z, BOYER T H, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS[J]. Environmental Science & Technology, 2015, 49(5): 3056-3066.
|
[62] |
杨晴, 孙昕, 李鹏飞, 等. 超声活化过硫酸盐降解甲基橙的影响因素研究[J]. 环境科学学报, 2020, 40(8): 2715-2721.
|
[63] |
DING Y, ZHU L, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2013, 129: 153-162. doi: 10.1016/j.apcatb.2012.09.015
|
[64] |
HUIE R E, CLIFTON C L. Temperature dependence of the rate constants for reactions of the sulfate radical, $ {\rm{SO}}_4^{{ ^ - }} \cdot$ with anions[J]. Journal of Physical Chemistry, 1990, 94(23): 8561-8567. doi: 10.1021/j100386a015
|
[65] |
FENG Y, SONG Q, LV W, et al. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices[J]. Chemosphere, 2017, 189: 643-651. doi: 10.1016/j.chemosphere.2017.09.109
|
[66] |
JI Y, DONG C, KONG D, et al. Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal, 2015, 263: 45-54. doi: 10.1016/j.cej.2014.10.097
|
[67] |
LIU L, LIN S, ZHANG W, et al. Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process[J]. Chemical Engineering Journal, 2018, 346: 515-524. doi: 10.1016/j.cej.2018.04.068
|
[68] |
XU M, DU H, GU X, et al. Generation and intensity of active oxygen species in thermally activated persulfate systems for the degradation of trichloroethylene[J]. RSC Advances, 2014, 76(4): 40511-40517. doi: 10.1039/C4RA04942J
|
[69] |
XU M, GU X, LU S, et al. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 438-446.
|
[70] |
CHAN K H, CHU W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process[J]. Water Research, 2009, 43(9): 2513-2521. doi: 10.1016/j.watres.2009.02.029
|
[71] |
WANG Z, YUAN R, GUO Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: Kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087.
|
[72] |
周骏, 肖九花, 方长玲, 等. UV/PMS体系硝基氯酚降解动力学及机理研究[J]. 中国环境科学, 2016, 36(1): 66-73. doi: 10.3969/j.issn.1000-6923.2016.01.011
|
[73] |
GAO H, CHEN J, ZHANG Y, et al. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J]. Chemical Engineering Journal, 2016, 306: 522-530. doi: 10.1016/j.cej.2016.07.080
|
[74] |
QIAN Y, XUE G, CHEN J, et al. Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change[J]. Journal of Hazardous Materials, 2018, 354: 153-160. doi: 10.1016/j.jhazmat.2018.05.004
|
[75] |
LIANG C, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. doi: 10.1016/j.chemosphere.2006.05.026
|
[76] |
LIANG C, WANG Z, MOHANTY N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃[J]. Science of the Total Environment, 2006, 370(2/3): 271-277.
|
[77] |
PEYTON G R. The free-radical chemistry of persulfate-based total organic carbon analyzers[J]. Marine Chemistry, 1993, 41(1/2/3): 91-103.
|
[78] |
BUXTON G V, BARLOW S, MCGOWAN S, et al. The reaction of the ${\rm{SO}}_3^ - $ radical with FeⅡ in acidic aqueous solution: A pulse radiolysis study[J]. Physical Chemistry Chemical Physics, 1999, 1(13): 3111-3115. doi: 10.1039/a901735f
|
[79] |
HUANG K C, ZHAO Z, HOAG G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560. doi: 10.1016/j.chemosphere.2005.02.032
|
[80] |
FANG G, DIONYSIOU D D, WANG Y, et al. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics[J]. Journal of Hazardous Materials, 2012, 227-228: 394-401. doi: 10.1016/j.jhazmat.2012.05.074
|
[81] |
WU Y, YANG Y, LIU Y, et al. Modelling study on the effects of chloride on the degradation of bezafibrate and carbamazepine in sulfate radical-based advanced oxidation processes: Conversion of reactive radicals[J]. Chemical Engineering Journal, 2019, 358: 1332-1341. doi: 10.1016/j.cej.2018.10.125
|
[82] |
YUAN R, WANG Z, HU Y, et al. Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification[J]. Chemosphere, 2014, 109: 106-112. doi: 10.1016/j.chemosphere.2014.03.007
|
[83] |
GU X, LU S, QIU Z, et al. Photodegradation performance of 1, 1, 1-trichloroethane in aqueous solution: In the presence and absence of persulfate[J]. Chemical Engineering Journal, 2013, 215-216: 29-35. doi: 10.1016/j.cej.2012.09.132
|
[84] |
MCKENNA J H, DOERING P H. Measurement of dissolved organic carbon by wet chemical oxidation with persulfate: Influence of chloride concentration and reagent volume[J]. Marine Chemistry, 1995, 42(2): 109-114.
|
[85] |
WACLAWEK S, LUTZE H V, GRUBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 44-62.
|
[86] |
FANG C, LOU X, HUANG Y, et al. Monochlorophenols degradation by UV/persulfate is immune to the presence of chloride: Illusion or reality?[J]. Chemical Engineering Journal, 2017, 323: 124-133. doi: 10.1016/j.cej.2017.04.094
|
[87] |
银仁莉. 过硫酸盐的非自由基氧化降解磺胺抗生素的效能及机制[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[88] |
SONG H, YAN L, WANG Y, et al. Electrochemically activated PMS and PDS: Radical oxidation versus nonradical oxidation[J]. Chemical Engineering Journal, 2020, 391: 123560. doi: 10.1016/j.cej.2019.123560
|
[89] |
ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process[J]. Environmental Science & Technology, 2015, 49(21): 12941-12950.
|
[90] |
MA W, WANG N, FAN Y, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2017, 336: 721-731.
|
[91] |
CHEN J B, FANG C, XIA W J, et al. Selective transformation of β-Lactam antibiotics by peroxymonosulfate: Reaction kinetics and nonradical mechanism[J]. Environmental Science & Technology, 2018, 52(3): 1461-1470.
|
[92] |
YANG Y, BANERJEE G, BRUDVIG GARY W, et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate[J]. Environmental Science & Technology, 2018, 52(10): 5911-5919.
|
[93] |
LEI Y, CHEN C S, AI J, et al. Selective decolorization of cationic dyes by peroxymonosulfate: non-radical mechanism and effect of chloride[J]. RSC Advances, 2015, 6(2): 866-871.
|
[94] |
LOU X Y, GUO Y G, XIAO D X, et al. Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation[J]. Environmental Science & Pollution Research, 2013, 20(9): 6317-6323.
|
[95] |
王海军. 氯水的漂白作用原理探究[J]. 化学教育(中英文), 2018, 39(19): 66-69.
|
[96] |
丁曦, 张学维, 周润生, 等. 非活化单过硫酸盐降解柳氮磺胺吡啶: 动力学及机制[J]. 环境科学, 2020, 41(5): 2310-2319.
|
[97] |
古振川, 高乃云, 安娜, 等. Cl−/PMS体系降解甲氧苄啶的效能与机理[J]. 中国环境科学, 2018, 38(3): 977-984. doi: 10.3969/j.issn.1000-6923.2018.03.022
|
[98] |
ZENG H, ZHAO X, ZHAO F, et al. Oxidation of 2,4-dichlorophenol in saline water by unactivated peroxymonosulfate: Mechanism, kinetics and implication for in situ chemical oxidation[J]. Science of the Total Environment, 2020, 728: 138826. doi: 10.1016/j.scitotenv.2020.138826
|
[99] |
FANG C, LOU X, TANG Y, et al. Dual character of peroxymonosulfate oxidation process to treat salty wastewater containing 2,4, 6-tribromophenol[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103998. doi: 10.1016/j.jece.2020.103998
|
[100] |
LI C, CHEN C, WANG Y, et al. Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation[J]. Chemical Engineering Journal, 2019, 362: 570-575. doi: 10.1016/j.cej.2019.01.057
|