[1] |
陈小芳, 李东, 固旭. 双酚类化合物的合成及应用进展研究 [J]. 广州化工, 2016, 44(5): 26-28. doi: 10.3969/j.issn.1001-9677.2016.05.010
CHEN X, LI D, GU X. Study on synthesis and application of bisphenols [J]. Guangzhou Chemical Industry, 2016, 44(5): 26-28(in Chinese). doi: 10.3969/j.issn.1001-9677.2016.05.010
|
[2] |
LIU X, SHI H, XIE B, et al. Microplastics as both a sink and a source of bisphenol A in the marine environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196.
|
[3] |
余建龙. 七种双酚类化合物雌激素活性评价及其在食品中检测方法的建立和应用[D]. 南昌: 南昌大学, 2014.
YU J. Study on the estrogenic activity and analytical method in foodstuffs for seven bisphenol analogues[D]. Nanchang: Nanchang University, 2014 (in Chinese).
|
[4] |
张江华, 李华文, 石丹, 等. 双酚A对人胚肝细胞DNA损伤和修复功能的影响 [J]. 环境与职业医学, 2005, 22(3): 197-199.
ZHANG J, LI H, SHI D, et al. Study on the DNA damage and repair effect of bisphenol A in human embryo liver L-02 cell line [J]. Environment and Occupational Medicine, 2005, 22(3): 197-199(in Chinese).
|
[5] |
GU J, WANG H, ZHOU L, et al. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebra fish and the protective role of N-acetyl N-cysteine [J]. Science of the Total Environment, 2020, 731: 1-9.
|
[6] |
MCKELVEYMARTIN V J, GREEN M H L, SCHMEZER P, et al. The single-cell gel-electrophoresis assay (comet assay) - A European review [J]. Mutation Research, 1993, 288(1): 47-63. doi: 10.1016/0027-5107(93)90207-V
|
[7] |
WANG R, BAI J, LI Y, et al. BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications [J]. Nano-Micro Letters, 2017, 9(2): 14-22.
|
[8] |
张静, 严静娜, 郭悦宁, 等. 阻燃剂四溴双酚A的厌氧-好氧生物降解 [J]. 环境化学, 2016, 35(9): 1776-1784. doi: 10.7524/j.issn.0254-6108.2016.09.2016013001
ZHANG J, YAN J, GUO Y, et al. Anaerobic and aerobic biodegradation of flame retardant tetrabromobisphenol A [J]. Environmental Chemistry, 2016, 35(9): 1776-1784(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016013001
|
[9] |
孙国新, 王杰琼, 周成智, 等. 四溴双酚A在近岸海水中的光降解动力学研究 [J]. 环境化学, 2018, 37(8): 1683-1690. doi: 10.7524/j.issn.0254-6108.2018010602
SUN G, WANG J, ZHOU C, et al. Photodegradation kinetics of tetrabromobisphenol A in coastal water [J]. Environmental Chemistry, 2018, 37(8): 1683-1690(in Chinese). doi: 10.7524/j.issn.0254-6108.2018010602
|
[10] |
ZHOU J, AN X, TANG Q, et al. Dual channel construction of WO3 photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A [J]. Applied Catalysis B-Environmental, 2020, 277: 1-9.
|
[11] |
QU R, FENG M, WANG X, et al. Rapid removal of tetrabromobisphenol A by ozonation in water: oxidation products, reaction pathways and toxicity assessment [J]. Plos One, 2015, 10(10): 1-17.
|
[12] |
熊美昱, 夏雨琪, 彭程. 典型类雌激素的降解方法及其影响因素研究进展 [J]. 环境化学, 2020, 39(3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303
XIONG M, XIA Y, PENG C. Degradation methods and influence factors of typical estrogen-like substances [J]. Environmental Chemistry, 2020, 39(3): 610-623(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101303
|
[13] |
FENG X Q, LUO M Q, HUANG W Y, et al. The degradation of BPA on enhanced heterogeneous photo-Fenton system using EDDS and different nanosized hematite [J]. Environmental Science and Pollution Research, 2020, 27(18): 23062-23072. doi: 10.1007/s11356-020-08649-9
|
[14] |
DUPUIS A, MIGEOT V, CARIOT A, et al. Quantification of bisphenol A, 353-nonylphenol and their chlorinated derivatives in drinking water treatment plants [J]. Environmental Science and Pollution Research, 2012, 19(9): 4193-4205. doi: 10.1007/s11356-012-0972-3
|
[15] |
KUNDU S, THOMPSON J V K, SHEN L Q, et al. Activation parameters as mechanistic probes in the TAML Iron(V)-Oxo oxidations of hydrocarbons [J]. Chemistry-a European Journal, 2015, 21(4): 1803-1810. doi: 10.1002/chem.201405024
|
[16] |
KUNDU S, ANNAVAJHALA M, KURNIKOV I V, et al. Experimental and theoretical evidence for multiple FeⅣ reactive intermediates in TAML-activator catalysis: Rationalizing a counterintuitive reactivity order [J]. Chemistry-a European Journal, 2012, 18(33): 10244-10249. doi: 10.1002/chem.201201665
|
[17] |
SEN GUPTA S, STADLER M, NOSER C A, et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide [J]. Science, 2002, 296(5566): 326-328. doi: 10.1126/science.1069297
|
[18] |
WARNER G R, MILLS M R, ENSLIN C, et al. Reactivity and operational stability of N-tailed TAMLs through kinetic studies of the catalyzed oxidation of orange Ⅱ by H2O2: synthesis and X-ray structure of an N-phenyl TAML [J]. Chemistry-a European Journal, 2015, 21(16): 6226-6233. doi: 10.1002/chem.201406061
|
[19] |
WANG C, GAO J, GU C. Rapid destruction of tetrabromobisphenol a by Iron(Ⅲ)-Tetraamidomacrocyclic ligand/layered double hydroxide composite/H2O2 system [J]. Environmental Science & Technology, 2017, 51(1): 488-496.
|
[20] |
SHAPPELL N W, VRABEL M A, MADSEN P J, et al. Destruction of estrogens using Fe-TAML/peroxide catalysis [J]. Environmental Science & Technology, 2008, 42(4): 1296-1300.
|
[21] |
CHANDA A, KHETAN S K, BANERJEE D, et al. Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators [J]. Journal of the American Chemical Society, 2006, 128(37): 12058-12059. doi: 10.1021/ja064017e
|
[22] |
SHEN L Q, BEACH E S, XIANG Y, et al. Rapid, biomimetic degradation in water of the persistent drug sertraline by TAML catalysts and hydrogen peroxide [J]. Environmental Science & Technology, 2011, 45(18): 7882-7887.
|
[23] |
CHEN M, YU Y Q, TAN P, et al. Selective degradation of estrogens by a robust Iron(Ⅲ) complex bearing a cross-bridged cyclam ligand via Iron(V)-Oxo species [J]. Chemical Engineering Journal, 2019, 378: 1-8.
|
[24] |
ELLIS W C, TRAN C T, ROY R, et al. Designing green oxidation catalysts for purifying environmental waters [J]. Journal of the American Chemical Society, 2010, 132(28): 9774-9781. doi: 10.1021/ja102524v
|
[25] |
LIANG S, XIAN Z, YANG H, et al. Rapid destruction of triclosan by Iron(Ⅲ)-Tetraamidomacrocyclic ligand/hydrogen peroxide system [J]. Chemosphere, 2020, 261: 1-9.
|
[26] |
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review [J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
|
[27] |
LI H, SHAN C, LI W, et al. Peroxymonosulfate activation by Iron(Ⅲ)-Tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent Iron-Oxo complex [J]. Water Research, 2018, 147: 233-241. doi: 10.1016/j.watres.2018.10.015
|
[28] |
GHOSH A, MITCHELL D A, CHANDA A, et al. Catalase-peroxidase activity of iron(Ⅲ)-TAML activators of hydrogen peroxide [J]. Journal of the American Chemical Society, 2008, 130(45): 15116-15126. doi: 10.1021/ja8043689
|
[29] |
SU H R, YU C Y, ZHOU Y F, et al. Quantitative structure activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2 [J]. Water Research, 2018, 140: 354-363. doi: 10.1016/j.watres.2018.04.062
|
[30] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O-) in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
|
[31] |
NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous-solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808
|
[32] |
WANG C, XIAN Z Y, DING Y H, et al. Self-assembly of Fe-III-TAML-based microstructures for rapid degradation of bisphenols [J]. Chemosphere, 2020, 256: 1-13.
|
[33] |
CHEMICAL BOOK. 4, 4'-(1-甲基亚乙基)双(2-甲基苯酚)[EB/OL]. [2020-08-24]. https://www.chemicalbook.com/ProductChemicalPropertiesCB3282153.htm.
|
[34] |
PUBCHEM. 4, 4'-Sulfonyldiphenol(Compound) [EB/OL]. [2020-08-24]. (https://pubchem.ncbi.nlm.nih.gov/compound/6626#section=Dissociation-Constants).
|
[35] |
CHEMICAL BOOK. 2,2-双(4-羟基-3,5-二甲基苯基)丙烷[EB/OL]. [2020-08-24]. https://www.chemicalbook.com/ProductChemicalPropertiesCB7338182.htm.
|
[36] |
WANG C, WEI Z, WANG L, et al. Assessment of bromide-based ionic liquid toxicity toward aquatic organisms and QSAR analysis [J]. Ecotoxicology and Environmental Safety, 2015, 115: 112-118. doi: 10.1016/j.ecoenv.2015.02.012
|
[37] |
GOLBRAIKH A, TROPSHA A. Beware of q2! [J]. Journal of Molecular Graphics & Modelling, 2002, 20(4): 269-276.
|
[38] |
CHENG Z W, YANG B W, CHEN Q C, et al. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation [J]. Chemosphere, 2018, 212: 828-836. doi: 10.1016/j.chemosphere.2018.08.097
|