[1] XIAO X, CHEN B, CHEN Z, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review [J]. Environmental Science & Technology, 2018, 52(9): 5027-5047.
[2] RAJAPAKSHA A U, CHEN S S, TSANG D C, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification [J]. Chemosphere, 2016, 148: 276-291. doi: 10.1016/j.chemosphere.2016.01.043
[3] LIAN F, XING B. Black Carbon (Biochar) In water/soil environments: Molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
[4] WANG J, WANG S. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282
[5] JIN J, LI S, PENG X, et al. HNO3 modified biochars for uranium (Ⅵ) removal from aqueous solution [J]. Bioresource Technology, 2018, 256: 247-253. doi: 10.1016/j.biortech.2018.02.022
[6] FANG G, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation [J]. Environmental Science & Technology, 2015, 49(9): 5645-5653.
[7] RAJENDRAN M, SHI L, WU C, et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil–rice system [J]. Chemosphere, 2019, 222: 314-322. doi: 10.1016/j.chemosphere.2019.01.149
[8] DING S, LIU Y. Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars [J]. Fuel, 2020, 260: 116382. doi: 10.1016/j.fuel.2019.116382
[9] RAJAPAKSHA A U, VITHANAGE M, AHMAD M, et al. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar [J]. Journal of Hazardous materials, 2015, 290: 43-50. doi: 10.1016/j.jhazmat.2015.02.046
[10] 王朝旭, 陈绍荣, 张峰, 等. 玉米秸秆生物炭及其老化对石灰性农田土壤氨挥发的影响 [J]. 农业环境科学学报, 2018, 37(10): 2350-2385. doi: 10.11654/jaes.2017-1727 WANG C X, CHEN S R, ZHANG F, et al. Effects of fresh and aged maize straw-derived biochars on ammonia volatilization in a calcareous arable soil [J]. Journal of Agro-Environment Science, 2018, 37(10): 2350-2385(in Chinese). doi: 10.11654/jaes.2017-1727
[11] NAGHDI M, TAHERAN M, BRAR S K, et al. A green method for production of nanobiochar by ball milling-optimization and characterization [J]. Journal of Cleaner Production, 2017, 164: 1394-1405. doi: 10.1016/j.jclepro.2017.07.084
[12] PENG Z, LIU X, CHEN H, et al. Characterization of ultraviolet-modified biochar from different feedstocks for enhanced removal of hexavalent chromium from water [J]. Water Science and Technology, 2019, 79(9): 1705-1716. doi: 10.2166/wst.2019.170
[13] LYU H, GAO B, HE F, et al. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue [J]. Chemical Engineering Journal, 2018, 335: 110-119. doi: 10.1016/j.cej.2017.10.130
[14] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater [J]. Bioresource Technology, 2016, 214: 836-851. doi: 10.1016/j.biortech.2016.05.057
[15] TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: A review [J]. Bioresource Technology, 2016, 212: 318-333. doi: 10.1016/j.biortech.2016.04.093
[16] LUO J, JIN M, YE L, et al. Removal of gaseous elemental mercury by hydrogen chloride non-thermal plasma modified biochar [J]. Journal of Hazardous materials, 2019, 377: 132-141. doi: 10.1016/j.jhazmat.2019.05.045
[17] WU W, LI J, LAN T, et al. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation [J]. Science of the Total Environment, 2017, 576: 766-774. doi: 10.1016/j.scitotenv.2016.10.163
[18] CHENG B H, ZENG R J, JIANG H. Recent developments of post-modification of biochar for electrochemical energy storage [J]. Bioresource Technology, 2017, 246: 224-233. doi: 10.1016/j.biortech.2017.07.060
[19] XIONG X, YU I K M, CHEN S S, et al. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration [J]. Catalysis Today, 2018, 314: 52-61. doi: 10.1016/j.cattod.2018.02.034
[20] LIU G, CHEN L, JIANG Z, et al. Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals [J]. Science of the Total Environment, 2017, 607-608: 1428-1436. doi: 10.1016/j.scitotenv.2017.07.046
[21] SUN L, CHEN D, WAN S, et al. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids [J]. Bioresource Technology, 2015, 198: 300-308. doi: 10.1016/j.biortech.2015.09.026
[22] 储刚, 赵婧, 刘洋, 等. 氧氟沙星和诺氟沙星在磷酸改性生物炭上的等温吸附行为 [J]. 环境化学, 2018, 37(3): 462-470. doi: 10.7524/j.issn.0254-6108.2017090403 CHU G, ZHAO J, LIU Y, et al. Sorption of ofloxacin and norfloxacin on modified biochars using phosphoric acid treatment [J]. Environmental Chemistry, 2018, 37(3): 462-470(in Chinese). doi: 10.7524/j.issn.0254-6108.2017090403
[23] WANG S, WANG N, YAO K, et al. Characterization and interpretation of Cd (Ⅱ) adsorption by different modified rice straws under contrasting conditions [J]. Scientific Reports, 2019, 9(1): 17868. doi: 10.1038/s41598-019-54337-1
[24] ZHU B, FAN T, ZHANG D. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw [J]. Journal of Hazardous materials, 2008, 153(1-2): 300-308. doi: 10.1016/j.jhazmat.2007.08.050
[25] ZHU Y, LI H, ZHANG G, et al. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading [J]. Bioresource Technology, 2018, 261: 142-150. doi: 10.1016/j.biortech.2018.04.004
[26] 周树烽, 陈成广, 刘允初, 等. 改性污泥生物碳及对富营养化水体吸附研究 [J]. 环境科学与技术, 2017, 40(8): 43-49. ZHOU S F, CHEN C G, LIU Y C, et al. Preparation of the KOH-modified sludge biochar bypyrolysis and adsorption of eutrophic water [J]. Environmental Science & Technology, 2017, 40(8): 43-49(in Chinese).
[27] SHEN Y, FU Y. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption [J]. Materials Today Energy, 2018, 9: 397-405. doi: 10.1016/j.mtener.2018.07.005
[28] DING Z, HU X, WAN Y, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests [J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 239-245. doi: 10.1016/j.jiec.2015.10.007
[29] GRATUITO M K B, PANYATHANMAPORN T, CHUMNANKLANG R A, et al. Production of activated carbon from coconut shell: Optimization using response surface methodology [J]. Bioresource Technology, 2008, 99(11): 4887-4895. doi: 10.1016/j.biortech.2007.09.042
[30] SAJJADI B, BROOME J W, CHEN W Y, et al. Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity [J]. Ultrasonics Sonochemistry, 2019, 51: 20-30. doi: 10.1016/j.ultsonch.2018.09.015
[31] JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar [J]. Chemical Engineering Journal, 2014, 248: 168-174. doi: 10.1016/j.cej.2014.03.006
[32] ZHOU Y, GAO B, ZIMMERMAN A R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects [J]. Chemical Engineering Journal, 2013, 231: 512-518. doi: 10.1016/j.cej.2013.07.036
[33] SHI Y, ZHANG T, REN H, et al. Polyethylene imine modified hydrochar adsorption for chromium (Ⅵ) and nickel (Ⅱ) removal from aqueous solution [J]. Bioresource Technology, 2018, 247: 370-379. doi: 10.1016/j.biortech.2017.09.107
[34] JIANG Q, XIE W, HAN S, et al. Enhanced adsorption of Pb(Ⅱ) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123962. doi: 10.1016/j.colsurfa.2019.123962
[35] SHI Y, HU H, REN H. Dissolved organic matter (DOM) removal from biotreated coking wastewater by chitosan-modified biochar: Adsorption fractions and mechanisms [J]. Bioresource Technology, 2020, 297: 122281. doi: 10.1016/j.biortech.2019.122281
[36] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material [J]. Chemical Reviews, 2015, 115(22): 12251-12285. doi: 10.1021/acs.chemrev.5b00195
[37] LYU H, HE Y, TANG J, et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment [J]. Environmental Pollution, 2016, 218(nov.): 1-7.
[38] WANG T, LIU S, MAO W, et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of Rhodamine B and Cr(Ⅵ) [J]. Journal of Hazardous materials, 2019, 389: 121827.
[39] FENG Y, LIU P, WANG Y, et al. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(Ⅴ), As(Ⅲ), Cr(Ⅵ), and Hg(Ⅱ): An X-ray absorption study [J]. Journal of Hazardous Materials, 2020, 384: 121342. doi: 10.1016/j.jhazmat.2019.121342
[40] XIA D, TAN F, ZHANG C, et al. ZnCl2-activated biochar from biogas residue facilitates aqueous As(Ⅲ) removal [J]. Applied Surface Science, 2016, 377: 361-369. doi: 10.1016/j.apsusc.2016.03.109
[41] LI B, YANG L, WANG C Q, et al. Adsorption of Cd(Ⅱ) from aqueous solutions by rape straw biochar derived from different modification processes [J]. Chemosphere, 2017, 175: 332-340. doi: 10.1016/j.chemosphere.2017.02.061
[42] KIM J R, KAN E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst [J]. Journal of Environmental Management, 2016, 180: 94-101.
[43] TRAKAL L, VESELSKA V, SAFARIK I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars [J]. Bioresource Technology, 2016, 203: 318-324. doi: 10.1016/j.biortech.2015.12.056
[44] THINES K R, ABDULLAH E C, MUBARAK N M, et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review [J]. Renewable and Sustainable Energy Reviews, 2017, 67: 257-276. doi: 10.1016/j.rser.2016.09.057
[45] WANG X, LIU Y, ZHU L, et al. Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation [J]. Journal of CO2 Utilization, 2019, 34: 733-741. doi: 10.1016/j.jcou.2019.09.003
[46] DING D, YANG S, QIAN X, et al. Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant [J]. Applied Catalysis B: Environmental, 2020, 263: 118348. doi: 10.1016/j.apcatb.2019.118348
[47] YANG X, WAN Y, ZHENG Y, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review [J]. Chemical Engineering Journal, 2019, 366: 608-621. doi: 10.1016/j.cej.2019.02.119
[48] LIU H, DENG L, SUN C, et al. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity [J]. Applied Surface Science, 2015, 326: 82-90. doi: 10.1016/j.apsusc.2014.11.110
[49] YIN Q, WANG R, ZHAO Z. Application of Mg-Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water [J]. Journal of Cleaner Production, 2018, 176(MAR. 1): 230-240.
[50] YAN L, LIU Y, ZHANG Y, et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline [J]. Bioresource Technology, 2020, 297: 122381. doi: 10.1016/j.biortech.2019.122381
[51] YANG F, ZHANG S, SUN Y, et al. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal [J]. Bioresource Technology, 2018, 265: 490-497. doi: 10.1016/j.biortech.2018.06.029
[52] WANG J, CHEN Z, CHEN B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets [J]. Environmental Science & Technology, 2014, 48(9): 4817-4825.
[53] INYANG M, GAO B, ZIMMERMAN A, et al. Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites [J]. Chemical Engineering Journal, 2014, 236: 39-46. doi: 10.1016/j.cej.2013.09.074
[54] HUANG D, WANG X, ZHANG C, et al. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism [J]. Chemosphere, 2017, 186: 414-421. doi: 10.1016/j.chemosphere.2017.07.154
[55] TANG J, LV H, GONG Y, et al. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal [J]. Bioresource Technology, 2015, 196: 355-363. doi: 10.1016/j.biortech.2015.07.047
[56] WANG T, LIU J, ZHANG Y, et al. Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal [J]. Chemical Engineering Journal, 2018, 331: 536-544. doi: 10.1016/j.cej.2017.09.017
[57] DE VELASCO MALDONADO P S, HERNáNDEZ-MONTOYA V, MONTES-MORáN M A. Plasma-surface modification vs air oxidation on carbon obtained from peach stone: Textural and chemical changes and the efficiency as adsorbents [J]. Applied Surface Science, 2016, 384: 143-151. doi: 10.1016/j.apsusc.2016.05.018
[58] GUPTA R K, DUBEY M, KHAREL P, et al. Biochar activated by oxygen plasma for supercapacitors [J]. Journal of Power Sources, 2015, 274: 1300-1305. doi: 10.1016/j.jpowsour.2014.10.169
[59] ZHANG H, WANG T, SUI Z, et al. Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma [J]. Fuel, 2019, 253: 703-712. doi: 10.1016/j.fuel.2019.05.068
[60] YANG F, JIANG Q, ZHU M, et al. Effects of biochars and MWNTs on biodegradation behavior of atrazine by Acinetobacter lwoffii DNS32 [J]. Science of the Total Environment, 2017, 577: 54-60. doi: 10.1016/j.scitotenv.2016.10.053
[61] 郑华楠, 宋晴, 朱义, 等. 芦苇生物炭复合载体固定化微生物去除水中氨氮 [J]. 环境工程学报, 2019, 13(2): 310-318. doi: 10.12030/j.cjee.201807179 ZHENG H N, SONG Q, ZHU Y, et al. Removing ammonia nitrogen from wastewater by immobilized microorganism with reed biochar composite carrier [J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 310-318(in Chinese). doi: 10.12030/j.cjee.201807179
[62] YAO Y, GAO B, INYANG M, et al. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential [J]. Bioresource Technology, 2011, 102(10): 6273-6278. doi: 10.1016/j.biortech.2011.03.006
[63] INYANG M, GAO B, DING W, et al. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse [J]. Separation Science and Technology, 2011, 46(12): 1950-1956. doi: 10.1080/01496395.2011.584604
[64] O'CONNOR D, PENG T, LI G, et al. Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil [J]. Science of the Total Environment, 2017, 621: 819-826.
[65] XU Y, CHEN B. Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution [J]. Journal of Soils and Sediments, 2014, 15(1): 60-70.
[66] ZHONG D, ZHANG Y, WANG L, et al. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe3O4 and persistent free radicals [J]. Environmental Pollution (Barking, Essex: 1987), 2018, 243(Pt B): 1302-1309.
[67] LIU J, ZHOU B, ZHANG H, et al. A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution [J]. Bioresource Technology, 2019, 294: 122152. doi: 10.1016/j.biortech.2019.122152
[68] TANG L, YU J, PANG Y, et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal [J]. Chemical Engineering Journal, 2018, 336: 160-169. doi: 10.1016/j.cej.2017.11.048
[69] TAN G, SUN W, XU Y, et al. Sorption of mercury (Ⅱ) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution [J]. Bioresource Technology, 2016, 211: 727-735. doi: 10.1016/j.biortech.2016.03.147
[70] LUO K, PANG Y, YANG Q, et al. Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid [J]. Chemosphere, 2019, 231: 495-501. doi: 10.1016/j.chemosphere.2019.05.151