[1] KALLENBORN R, BRORSTRöM-LUNDéN E, REIERSEN L O, et al. Pharmaceuticals and personal care products (PPCPs) in arctic environments: Indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change [J]. Environmental Science and Pollution Research, 2018, 25(33): 33001-33013. doi: 10.1007/s11356-017-9726-6
[2] TRAN N H, LI J H, HU J Y, et al. Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater [J]. Environmental Science and Pollution Research, 2014, 21(6): 4727-4740. doi: 10.1007/s11356-013-2428-9
[3] HAMANN E, STUYFZAND P J, GRESKOWIAK J, et al. The fate of organic micropollutants during long-term/long-distance river bank filtration [J]. Science of the Total Environment, 2016, 545: 629-640.
[4] 王琦, 武俊梅, 彭晶倩, 等. 饮用水系统中药物和个人护理用品的研究进展 [J]. 环境化学, 2018, 37(3): 453-461. doi: 10.7524/j.issn.0254-6108.2017071901 WANG Q, WU J M, PENG J Q, et al. Research advances in pharmaceuticals and personal care products in drinking water system [J]. Environmental Chemistry, 2018, 37(3): 453-461(in Chinese). doi: 10.7524/j.issn.0254-6108.2017071901
[5] KATSOYIANNIS I A, CANONICA S, VON GUNTEN U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2 [J]. Water Research, 2011, 45(13): 3811-3822. doi: 10.1016/j.watres.2011.04.038
[6] LEE Y, VON GUNTEN U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate(vi), and ozone) and non-selective oxidants (hydroxyl radical) [J]. Water Research, 2010, 44(2): 555-566. doi: 10.1016/j.watres.2009.11.045
[7] 郭晋, 陈作雁, 石林, 等. 光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理 [J]. 环境化学, 2019, 38(12): 2757-2767. doi: 10.7524/j.issn.0254-6108.2018122201 GUO J, CHEN Z Y, SHI L, et al. Advanced treatment of ciprofloxacin and sulfamethoxazole by the combined photocatalysis and oxidation technology [J]. Environmental Chemistry, 2019, 38(12): 2757-2767(in Chinese). doi: 10.7524/j.issn.0254-6108.2018122201
[8] HUBER M M, CANONICA S, PARK G Y, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes [J]. Environmental Science & Technology, 2003, 37(5): 1016-1024.
[9] ROSARIO-ORTIZ F L, WERT E C, SNYDER S A. Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater [J]. Water Research, 2010, 44(5): 1440-1448. doi: 10.1016/j.watres.2009.10.031
[10] LEE Y, GERRITY D, LEE M, et al. Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: Prediction of abatement efficiency, energy consumption, and byproduct formation [J]. Environmental Science & Technology, 2016, 50(7): 3809-3819.
[11] ZHANG S S, LIN T, CHEN W, et al. Degradation kinetics, byproducts formation and estimated toxicity of metronidazole (mnz) during chlor(am)ination [J]. Chemosphere, 2019, 235: 21-31. doi: 10.1016/j.chemosphere.2019.06.150
[12] HUERTA-FONTELA M, GALCERAN M T, VENTURA F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment [J]. Water Research, 2011, 45(3): 1432-1442. doi: 10.1016/j.watres.2010.10.036
[13] YANG X, SUN J L, FU W J, et al. PPCP degradation by uv/chlorine treatment and its impact on dbp formation potential in real waters [J]. Water Research, 2016, 98: 309-318. doi: 10.1016/j.watres.2016.04.011
[14] PAN M W, WU Z H, TANG C Y, et al. Comparative study of naproxen degradation by the uv/chlorine and the UV/H2O2 advanced oxidation processes [J]. Environmental Science Water Research & Technology, 2018, 4(9): 1219-1230.
[15] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) [J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.
[16] JIN J, EL-DIN M G, BOLTON J R. Assessment of the uv/chlorine process as an advanced oxidation process [J]. Water Research, 2011, 45(4): 1890-1896. doi: 10.1016/j.watres.2010.12.008
[17] 张馨怡, 魏东斌, 杜宇国. 紫外-氯联合消毒处理及副产物生成特征研究进展 [J]. 环境化学, 2018, 37(9): 1950-1960. doi: 10.7524/j.issn.0254-6108.2017111302 ZHANG X Y, WEI D B, DU Y G. Ultraviolet-chlorine combination disinfection and formation of disinfection by-products: A review [J]. Environmental Chemistry, 2018, 37(9): 1950-1960(in Chinese). doi: 10.7524/j.issn.0254-6108.2017111302
[18] MATAFONOVA G, BATOEV V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review [J]. Water Research, 2018, 132: 117-189.
[19] BEN W W, SHI Y W, LI W W, et al. Oxidation of sulfonamide antibiotics by chlorine dioxide in water: Kinetics and reaction pathways [J]. Chemical Engineering Journal, 2017, 327: 743-750. doi: 10.1016/j.cej.2017.06.157
[20] GUO K H, WU Z H, SHANG C, et al. Radical chemistry and structural relationships of ppcp degradation by UV/chlorine treatment in simulated drinking water [J]. Environmental Science & Technology, 2017, 51(18): 10431-10439.
[21] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process [J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069
[22] ESPLUGAS S, BILA D M, KRAUSE L G T, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073
[23] FU W J, LI B, YANG J Q, et al. New insights into the chlorination of sulfonamide: Smiles-type rearrangement, desulfation, and product toxicity [J]. Chemical Engineering Journal, 2018, 331: 785-793. doi: 10.1016/j.cej.2017.09.024
[24] PENG M G, DU E D, LI Z H, et al. Transformation and toxicity assessment of two UV filters using UV/H2O2 process [J]. Science of the Total Environment, 2017, 603/604: 361-369. doi: 10.1016/j.scitotenv.2017.06.059
[25] SUKUL P, SPITELLER M. Sulfonamides in the environment as veterinary drugs [J]. Reviews of Environmental Contamination & Toxicology, 2006, 187(187): 67-101.
[26] 唐娜, 张圣虎, 陈玫宏, 等. 长江南京段表层水体中12种磺胺类抗生素的污染水平及风险评价 [J]. 环境化学, 2018, 37(3): 505-512. doi: 10.7524/j.issn.0254-6108.2017062705 TANG N, ZHANG S H, CHEN M H, et al. Contamination level and risk assessment of 12 sulfonamides in surface water of Nanjing reach of the Yangtze River [J]. Environmental Chemistry, 2018, 37(3): 505-512(in Chinese). doi: 10.7524/j.issn.0254-6108.2017062705
[27] WU J T, WU C H, LIU C Y, et al. Photodegradation of sulfonamide antimicrobial compounds (sulfadiazine, sulfamethizole, sulfamethoxazole and sulfathiazole) in various UV/oxidant systems [J]. Water Sci Technol, 2015, 71(3): 412-417. doi: 10.2166/wst.2015.005
[28] BARAN W, ADAMEK E, SOBCZAK A, et al. Photocatalytic degradation of sulfa drugs with TiO2, Fe salts and TiO2/FeCl3 in aquatic environment—kinetics and degradation pathway [J]. Applied Catalysis B: Environmental, 2009, 90(3): 516-525.
[29] LI B, ZHANG T. pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater [J]. Water Research, 2012, 46(11): 3703-3713. doi: 10.1016/j.watres.2012.04.018
[30] DEBORDE M, VON GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: A critical review [J]. Water Research, 2008, 42(1): 13-51.
[31] LIAO Q N, JI F, LI J C, et al. Decomposition and mineralization of sulfaquinoxaline sodium during UV/H2O2 oxidation processes [J]. Chemical Engineering Journal, 2016, 284: 494-502. doi: 10.1016/j.cej.2015.08.150
[32] SOUFAN M, DEBORDE M, DELMONT A, et al. Aqueous chlorination of carbamazepine: Kinetic study and transformation product identification [J]. Water Research, 2013, 47(14): 5076-5087. doi: 10.1016/j.watres.2013.05.047
[33] LIN C C, LIN H Y, HSU L J. Degradation of ofloxacin using UV/H2O2 process in a large photoreactor [J]. Separation & Purification Technology, 2016, 168: 57-61.
[34] SHARMA J, MISHRA I M, KUMAR V. Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82- mathcontainer loading mathjax oxidation systems [J]. Journal of Environmental Management, 2015, 156: 266-275.
[35] IMOBERDORF G, MOHSENI M. Degradation of natural organic matter in surface water using vacuum-UV irradiation [J]. Journal of Hazardous Materials, 2011, 186(1): 240-246. doi: 10.1016/j.jhazmat.2010.10.118
[36] MáRTIRE D O, ROSSO J A, BERTOLOTTI S G, et al. Kinetic study of the reactions of chlorine atoms and Cl2•- radical anions in aqueous solutions. Ii. Toluene, benzoic acid, and chlorobenzene† [J]. Journal of Physical Chemistry A, 2001, 105(22): 5385-5392. doi: 10.1021/jp004630z
[37] HASEGAWA K, NETA P. Rate constant and mechanisms of reaction of Cl2- radicals [J]. Jphyschem, 1978, 82(8): 854-857.
[38] ALFASSI Z B, HUIE R E, MOSSERI S, et al. Kinetics of one-electron oxidation by the ClO radical [J]. International Journal of Radiation Applications & Instrumentationpart Cradiation Physics & Chemistry, 1988, 32(14): 3888-3891.
[39] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system [J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
[40] WU Z H, FANG J Y, XIANG Y Y, et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/Chlorine process: Kinetics and transformation pathways [J]. Water Research, 2016, 104: 272-282. doi: 10.1016/j.watres.2016.08.011
[41] SUN P Z, LEE W N, ZHANG R C, et al. Degradation of DEET and caffeine under UV/Chlorine and simulated Sunlight/Chlorine conditions [J]. Environmental Science & Technology, 2016, 50(24): 13265-13273.
[42] WANG M, HELBLING D E. A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics [J]. Water Research, 2016, 102: 241-251. doi: 10.1016/j.watres.2016.06.042
[43] JI Y, SHI Y, WANG L, et al. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: Formation of SO2 extrusion products and effects of natural organic matter [J]. Science of The Total Environment, 2017, 593/594: 704-712. doi: 10.1016/j.scitotenv.2017.03.192
[44] VENIERI D, GOUNAKI I, BIKOUVARAKI M, et al. Solar photocatalysis as disinfection technique: Inactivation of klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile [J]. Journal of Environmental Management, 2017, 195(2): 140-147.
[45] BONVIN F, OMLIN J, RUTLER R, et al. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation [J]. Environmental Science & Technology, 2013, 47(13): 6746-6755.
[46] MA G G, DíAZ-CRUZ M S, BARCELó D. Kinetic studies and characterization of photolytic products of sulfamethazine, sulfapyridine and their acetylated metabolites in water under simulated solar irradiation [J]. Water Research, 2012, 46(3): 711-722. doi: 10.1016/j.watres.2011.11.035