[1] 中华人民共和国生态环境部, 2019中国生态环境状况公报[EB], 2020.
[2] 中华人民共和国生态环境部, GB 3838-2002, 地表水环境质量标准[S], 2002.
[3] BRATBY J. Coagulation and flocculation in water and wastewater treatment, thirded[M]. IWA Publishing, London, 2016.
[4] PIRSAHEB M, SHARAFI K, KARAMI A. Evaluating the performance of inorganic coagulants (poly aluminum chloride, ferrous sulfate, ferric chloride and aluminum sulfate) in removing the turbidity from aqueous solutions [J]. International Journal of Pharmacy & Technology, 2016, 8(2): 13168-13181.
[5] VERMA A K, DASH R R, BHUNIA P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters [J]. Journal of Environmental Management, 2012, 93(1): 154-168.
[6] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review [J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029
[7] JIANG J. The role of coagulation in water treatment [J]. Current Opinion in Chemical Engineering, 2015, 8: 36-44. doi: 10.1016/j.coche.2015.01.008
[8] LEE C S, ROBINSON J, CHONG M F. A review on application of flocculants in wastewater treatment [J]. Process Safety and Environmental Protection, 2014, 92: 489-508. doi: 10.1016/j.psep.2014.04.010
[9] YANG R, LI H, HUANG M, et al. A review on chitosan-based flocculants and their applications in water [J]. Water Research, 2016, 95: 59-89. doi: 10.1016/j.watres.2016.02.068
[10] FU Y, ZHANG J, WANG Y, et al. Resource preparation of poly-Al-Zn-Fe (PAZF) coagulant from galvanized aluminum slag: Characteristics, simultaneous removal efficiency and mechanism of nitrogen and organic matters [J]. Chemical Engineering Journal, 2012, 203: 301-308. doi: 10.1016/j.cej.2012.07.045
[11] 杨青青. 聚硅酸硫酸锌铁絮凝剂的制备及其在含藻水中的应用[D]. 重庆: 重庆大学, 2015. YANG Q Q. The preparation of poly-silicate-sulfate-Zn-Fe flocculant and application in the algae water[D]. Chongqing: University of Chongqing, 2015(in Chinese).
[12] MOUSSAS P A, ZOUBOULIS A I. A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant-Polyferric silicate sulphate (PFSiS) [J]. Separation and Purification Technology, 2008, 63: 475-483. doi: 10.1016/j.seppur.2008.06.009
[13] WAN Y, HUANG X, SHI B Y, et al. Reduction of organic matter and disinfection byproducts formation potential by titanium, aluminum and ferric salts coagulation for micro-polluted source water treatment [J]. Chemosphere, 2019, 219: 28-35. doi: 10.1016/j.chemosphere.2018.11.117
[14] GUIBAL E, VAN M. DEMPSEY B A, et al A review of the use of chitosan for the removal of particulate and dissolved contaminants [J]. Separation and Purification Technology, 2006, 41(11): 2487-2514.
[15] RIZZO L, GENNARO A, GALLO M, et al. Coagulation/chlorination of surface water: A comparison between chitosan and metal salts [J]. Separation and Purification Technology, 2008, 62(1): 79-85. doi: 10.1016/j.seppur.2007.12.020
[16] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment [J]. Water Research, 2007, 41(11): 2301-2324. doi: 10.1016/j.watres.2007.03.012
[17] OKUDA T, NISHIJIMA W, SUGIMOTO M, et al. Removal of coagulant aluminum from water treatment residuals by acid [J]. Water Research, 2014, 60: 75-81. doi: 10.1016/j.watres.2014.04.041
[18] HUANG X, GAO B, WANG Y, et al. Coagulation performance and flocs properties of a new composite coagulant: Polytitanium-silicate-sulfate [J]. Chemical Engineering Journal, 2014, 245: 173-179. doi: 10.1016/j.cej.2014.02.018
[19] HUSSAIN S, AWAD J, SARKAR B, et al. Coagulation of dissolved organic matter in surface water by novel titanium (Ⅲ) chloride: Mechanistic surface chemical and spectroscopic characterization [J]. Separation and Purification Technology, 2019, 213: 213-223. doi: 10.1016/j.seppur.2018.12.038
[20] WANG D, TANG H. Modified inorganic polymer Flocculant-PFSi [J]. Water Research, 2001, 35: 3418-3428. doi: 10.1016/S0043-1354(01)00034-3
[21] ZENG Y, PARK J. Characterization and coagulation performance of a novel inorganic polymer coagulant-poly-zinc-silicate-sulfate [J]. Colloids and Surface A-Physicochemical and Engineering Aspect, 2009, 334: 147-154.
[22] ZHU G, WANG Q, YIN J, et al. Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc-iron-phosphate coagulant [J]. Water Research, 2016, 100: 201-210. doi: 10.1016/j.watres.2016.05.035
[23] GENC-FUHRMAN H, MIKKELSEN P S, LEDIN A. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid [J]. Science of the Total Environment, 2016, 566/567: 76-85. doi: 10.1016/j.scitotenv.2016.04.210
[24] WATSON M, TUBIC A, AGBABA J, et al. Response surface methodology: Process and product optimization using designed experiments, second ed[M]. John Wiley & Sons, New York, 2002.
[25] ZHANG W X, YANG H, DONG L, et al. Efficient removal of both cationic and anionic dyes from aqueous solutions using a novel amphoteric straw-based adsorbent [J]. Carbohydrate Polymers, 2012, 90(2): 887-893. doi: 10.1016/j.carbpol.2012.06.015
[26] CHOI K Y J, DEMPSEY B A. In-line coagulation with low-pressure membrane filtration [J]. Water Research, 2004, 38(19): 4271-4281. doi: 10.1016/j.watres.2004.08.006
[27] WANG Z, PENG S, NAN J, et al. Quantitative analysis of cake characteristics based on SEM imaging during coagulation-ultrafiltration process [J]. Environmental Science and Pollution Research International, 2019, 26: 36296-36307. doi: 10.1007/s11356-019-06678-7
[28] WU H, LIU Z, YANG H, et al. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water [J]. Water Research, 2016, 96: 126-135. doi: 10.1016/j.watres.2016.03.055
[29] CHAKRABORTI R K, GARDNER K H, ATKINSONA J F, et al. Changes in fractal dimension during aggregation [J]. Water Research, 2003, 37: 873-883. doi: 10.1016/S0043-1354(02)00379-2
[30] ZHAO Y, SHON H, PHUNTSHO S, et al. Removal of natural organic matter by titanium tetrachloride: the effect of total hardness and ionic strength [J]. Journal of Environmental Management, 2014, 134: 20-29. doi: 10.1016/j.jenvman.2014.01.002
[31] ZHAO Y, GAO B, SHON H, et al. The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride TiCl4 [J]. Journal of Hazardous Materials, 2011, 198: 70-77. doi: 10.1016/j.jhazmat.2011.10.015
[32] ZHAO Y, GAO B, QI Q, et al. Cationic polyacrylamide as coagulant aid with titanium tetrachloride for low molecule organic matter removal [J]. Journal of Hazardous Materials, 2013, 258: 84-92.
[33] 张鹏, 王雨露, 赵冬琴, 等. 聚磷氯化铁镁钛混凝剂的制备与表征 [J]. 环境化学, 2018, 37(12): 2677-2687. doi: 10.7524/j.issn.0254-6108.2018012104 ZHANG P, WANG Y L, ZHAO D Q, et al. Preparation and characterization of polychlorinated ferric magnesium titanium(PFMTC) [J]. Environmental Chemistry, 2018, 37(12): 2677-2687(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012104
[34] 陈伟. 铁钛混凝剂的制备及在除藻和控制藻源膜污染中的应用研究[D]. 重庆: 重庆大学, 2016. CHEN W. The preparation of Fe-Ti based coagulant and its application in algae removal and membrane fouling controlling[D]. Chongqing: University of Chongqing, 2016(in Chinese).
[35] XU B, ZHANG Y J, LI X, et al. A simple preparation route for polysilicate titanium salt from spent titanium solutions [J]. Water Science and Technology, 2019, 80: 1347-1356. doi: 10.2166/wst.2019.383
[36] WEI Y, DING A, DONG L, et al. Characterization and coagulation performance of an inorganic coagulant-poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater [J]. Colloids and Surface A-Physicochemical and Engineering Aspect, 2015, 470: 137-141.
[37] TANG Y N, HU X Y, CAI J, et al. An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water [J]. Chemosphere, 2020, 259: 127464. doi: 10.1016/j.chemosphere.2020.127464
[38] WEI Y X, DONG X Z, DING A M, et al. Characterization and coagulation-flocculation behavior of an inorganic polymer coagulant-poly-ferric-zinc-sulfate [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 351-356. doi: 10.1016/j.jtice.2015.06.004
[39] WANG X, GAN Y, GUO S, et al. Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: A mechanism analysis [J]. Water Research, 2018, 132: 350-360. doi: 10.1016/j.watres.2017.12.081
[40] WEI H, REN J, LI A, et al. Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride [J]. Chemical Engineering Journal, 2018, 349: 737-747. doi: 10.1016/j.cej.2018.05.151
[41] LIU Z, HUANG H, LI A, et al. Flocculation and antimicrobial properties of a cationized starch [J]. Water Research, 2017, 119: 57-66. doi: 10.1016/j.watres.2017.04.043
[42] 王毅力, 卢佳, 杜白雨, 等. 聚合氯化铁-腐殖酸(PFC-HA)絮体的不同拓扑空间下分形维数的研究 [J]. 环境科学学报, 2008, 28(4): 606-615. doi: 10.3321/j.issn:0253-2468.2008.04.003 WANG Y L, LU J, DU B, et al. Fractal dimension of polyferric chloride humic acid(PFC-HA) flocs in different topological spaces [J]. Acta Scientiae Circumstantiae, 2008, 28(4): 606-615(in Chinese). doi: 10.3321/j.issn:0253-2468.2008.04.003
[43] XIAO F, XIAO P, WANG D S. Influence of allochthonous organic matters on algae removal: Organic removal and floc characteristics [J]. Colloids and Surface A-Physicochemical and Engineering Aspect, 2019, 583: 123995.
[44] GREGOR J, NOKES C, FENTON E. Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation [J]. Water Research, 1997, 31(12): 2949-2958. doi: 10.1016/S0043-1354(97)00154-1
[45] NARKIS N, REBHUN M. Stoichiometric relationship between humic and fulvic acids and flocculants [J]. Journal American Water Works Association, 1977, 69(6): 325-328. doi: 10.1002/j.1551-8833.1977.tb06752.x