[1] |
沈平. 《斯德哥尔摩公约》与持久性有机污染物(POPs) [J]. 化学教育, 2005(6): 6-10. doi: 10.3969/j.issn.1003-3807.2005.06.003
SHEN P. Stockholm Convention and persistent organic pollutants (POPs) [J]. Chemical Education, 2005(6): 6-10(in Chinese). doi: 10.3969/j.issn.1003-3807.2005.06.003
|
[2] |
王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的一些研究进展 [J]. 中国科学: 化学, 2010, 40(2): 99-123.
WANG Y W, CAI Y Z, JIANG G B. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention [J]. Chinese Science: Chemistry, 2010, 40(2): 99-123(in Chinese).
|
[3] |
武丽辉, 张文君. 《斯德哥尔摩公约》受控化学品家族再添新丁 [J]. 农药科学与管理, 2017, 38(10): 17-20. doi: 10.3969/j.issn.1002-5480.2017.10.005
WU L H, ZHANG W J. New POPs under the Stockholm Convention [J]. Pesticide Science and Administration, 2017, 38(10): 17-20(in Chinese). doi: 10.3969/j.issn.1002-5480.2017.10.005
|
[4] |
VIJGEN J, ABHILASH P C, LI Y F, et al. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers [J]. Environmental Science and Pollution Research, 2011, 18(2): 152-162. doi: 10.1007/s11356-010-0417-9
|
[5] |
AHRENS L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate [J]. Journal of Environmental Monitoring, 2011, 13(1): 20-31. doi: 10.1039/C0EM00373E
|
[6] |
WONG M H, LEUNG A O W, CHAN J K Y, et al. A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk [J]. Chemosphere, 2005, 60(6): 740-752. doi: 10.1016/j.chemosphere.2005.04.028
|
[7] |
DHAKAL K, GADUPUDI G S, LEHMLER H J, et al. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs) [J]. Environment Science and Pollution Research International, 2018, 25(17): 16277-16290. doi: 10.1007/s11356-017-9694-x
|
[8] |
GRIMM F A, HU D, KANIA-KORWEL I, et al. Metabolism and metabolites of polychlorinated biphenyls [J]. Critical Reviews in Toxicology, 2015, 45(3): 245-272. doi: 10.3109/10408444.2014.999365
|
[9] |
毕新慧, 徐晓白. 多氯联苯的环境行为 [J]. 化学进展, 2000, 12(2): 152-160. doi: 10.3321/j.issn:1005-281X.2000.02.004
BI X H, XU X B. Behaviors of PCBs in Environment [J]. Progress in Chemistry, 2000, 12(2): 152-160(in Chinese). doi: 10.3321/j.issn:1005-281X.2000.02.004
|
[10] |
JAWARD F M, FARRAR N J, HARNER T, et al. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe [J]. Environmental Science & Technology, 2004, 38(1): 34-41.
|
[11] |
金一和, 刘晓, 秦红梅, 等. 我国部分地区自来水和不同水体中的PFOS污染 [J]. 中国环境科学, 2004, 24(2): 39-42.
JIN Y H, LIU X, QIN H M, et al. The status quo of perfluorooctane sulfonate (PFOS) pollution in tap water and different waters in partial areas of China [J]. China Environmental Science, 2004, 24(2): 39-42(in Chinese).
|
[12] |
GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342.
|
[13] |
BATOOL S, AB RASHID S, MAAH M J, et al. Geographical distribution of persistent organic pollutants in the environment: A review [J]. Journal of Environmental Biology, 2016, 37(5): 1125-1134.
|
[14] |
员晓燕, 杨玉义, 李庆孝, 等. 中国淡水环境中典型持久性有机污染物(POPs)的污染现状与分布特征 [J]. 环境化学, 2013, 32(11): 2072-2081. doi: 10.7524/j.issn.0254-6108.2013.11.009
YAN X Y, YANG Y Y, LING Q X, et al. Present situation and distribution characteristics of persistent organic pollutants in freshwater in China [J]. Environmental Chemistry, 2013, 32(11): 2072-2081(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.11.009
|
[15] |
于燕妮, 徐承旭. 毒性污染物抵达世界最深海洋 [J]. 水产科技情报, 2019, 46(2): 117.
YU Y N, XU C X. Toxic pollutants reach the deepest ocean in the world [J]. Fisheries Science & Technology Information, 2019, 46(2): 117(in Chinese).
|
[16] |
TSAI P C, KO Y C, HUANG W, et al. Increased liver and lupus mortalities in 24-year follow-up of the Taiwanese people highly exposed to polychlorinated biphenyls and dibenzofurans [J]. Science of The Total Environment, 2007, 374(2/3): 216-222.
|
[17] |
AKAHANE M, MATSUMOTO S, KANAGAWA Y, et al. Long-term health effects of PCBs and related compounds: A comparative analysis of patients suffering from Yusho and the general population [J]. Archives of Environmental Contamination and Toxicology, 2018, 74(2): 203-217. doi: 10.1007/s00244-017-0486-6
|
[18] |
BERNARD A, BROECKAERT F, DE POORTER G, et al. The belgian PCB/dioxin incident: Analysis of the food chain contamination and health risk evaluation [J]. Environmental Research, 2002, 88(1): 1-18. doi: 10.1006/enrs.2001.4274
|
[19] |
王薛洁, 余章斌, 韩树萍, 等. 整体原位杂交方法研究多氯联苯对斑马鱼心脏发育的影响 [J]. 实用儿科临床杂志, 2012, 27(7): 537-539.
WANG X J, YU Z B, HAN S P, et al. Effect of polychlorinated biphenyls in heart development ofzebrafish in situ hybridization [J]. Chinese Journal of Applied Clinical Pediatrics, 2012, 27(7): 537-539(in Chinese).
|
[20] |
RANASINGHE P, THORN R J, SETO R, et al. Embryonic exposure to 2,2',3,5',6-pentachlorobiphenyl (PCB-95) causes developmental malformations in zebrafish [J]. Environmental Toxicology and Chemistry, 2020, 39(1): 162-170. doi: 10.1002/etc.4587
|
[21] |
PARK C M, KIM K T, RHYU D Y. Low-concentration exposure to organochlorine pesticides (OCPs) in L6 myotubes and RIN-m5F pancreatic beta cells induces disorders of glucose metabolism [J]. Toxicology in Vitro, 2020, 65: 8.
|
[22] |
KO E, KIM D, KIM K, et al. The action of low doses of persistent organic pollutants (POPs) on mitochondrial function in zebrafish eyes and comparison with hyperglycemia to identify a link between POPs and diabetes [J]. Toxicology Mechanisms and Methods, 2020, 30(4): 275-283. doi: 10.1080/15376516.2020.1717704
|
[23] |
GLAZER L, HAHN M E, ALURU N. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior [J]. Neurotoxicology, 2016, 52: 134-143. doi: 10.1016/j.neuro.2015.11.012
|
[24] |
CHEN J, DAS S R, LA DU J, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring [J]. Environmental Toxicology and Chemistry, 2013, 32(1): 201-206. doi: 10.1002/etc.2031
|
[25] |
DAI Y J, JIA Y F, CHEN N, et al. Zebrafish as a model system to study toxicology [J]. Environmental Toxicology and Chemistry, 2014, 33(1): 11-17. doi: 10.1002/etc.2406
|
[26] |
WITTBRODT J, SHIMA A, SCHARTL M. Medaka - A model organism from the Far East [J]. Nature Reviews Genetics, 2002, 3(1): 53-64. doi: 10.1038/nrg704
|
[27] |
毛炳宇. 非洲爪蟾: 模式生物里的青蛙王子 [J]. 生命世界, 2008(5): 60-63.
MAO B Y. Xenopus laevis: the frog prince in model organisms [J]. World of Life, 2008(5): 60-63(in Chinese).
|
[28] |
STADNICKA J, SCHIRMER K, ASHAUER R. Predicting concentrations of organic chemicals in fish by using toxicokinetic models [J]. Environmental Science & Technology, 2012, 46(6): 3273-3280.
|
[29] |
HILL A J, TERAOKA H, HEIDEMAN W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicological Sciences, 2005, 86(1): 6-19. doi: 10.1093/toxsci/kfi110
|
[30] |
BHANDARI R K. Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes [J]. Environmental Epigenetics, 2016, 2(1): 1-9.
|
[31] |
沈敏, COADY K, 董晶, 等. 化学品生态毒性测试鱼类模式生物的应用与展望 [J]. 生态毒理学报, 2017, 12(2): 34-43. doi: 10.7524/AJE.1673-5897.20161126004
SHEN M, COADY K, DOGN J, et al. Application and outlook of various fish models used in chemical ecotoxicity test [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 34-43(in Chinese). doi: 10.7524/AJE.1673-5897.20161126004
|
[32] |
BELIAEVA N F, KASHIRTSEVA V N, MEDVEDEVA N V, et al. Zebrafish as a model organism for biomedical studies [J]. Biomeditsinskaia khimiia, 2010, 56(1): 120-131. doi: 10.18097/pbmc20105601120
|
[33] |
杜青平, 刘伍香, 袁保红, 等. 1,2,4-三氯苯对斑马鱼生殖和胚胎发育毒性效应 [J]. 中国环境科学, 2012, 32(4): 736-741. doi: 10.3969/j.issn.1000-6923.2012.04.025
DU Q P, LIU W X, YUAN B H, et al. Reproduction and embrvonic development toxicity of 1,2,4-TCB on zebrafish embryos [J]. China Environmental Science, 2012, 32(4): 736-741(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.04.025
|
[34] |
HE J H, GAO J M, HUANG C-J, et al. Zebrafish models for assessing developmental and reproductive toxicity [J]. Neurotoxicology and Teratology, 2014, 42: 35-42. doi: 10.1016/j.ntt.2014.01.006
|
[35] |
TANG B, LUO X J, HUANG C C, et al. Characterizing the influence of metabolism on the halogenated organic contaminant biomagnification in two artificial food chains using compound- and enantiomer-specific stable carbon isotope analysis [J]. Environment Science & Technology, 2018, 52(18): 10359-10368.
|
[36] |
TANG B, POMA G, BASTIAENSEN M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio) [J]. Environment International, 2019, 126: 512-522. doi: 10.1016/j.envint.2019.02.063
|
[37] |
BERGHUIS S A, ROZE E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence [J]. Current Problems in Pediatric and Adolescent Health Care, 2019, 49(6): 133-159. doi: 10.1016/j.cppeds.2019.04.006
|
[38] |
DELEON S, HALITSCHKE R, HAMES R S, et al. The effect of polychlorinated biphenyls on the song of two passerine species [J]. PLoS One, 2013, 8(9): 11.
|
[39] |
RUBINSTEIN A L. Zebrafish assays for drug toxicity screening [J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(2): 231-240.
|
[40] |
HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome [J]. Nature, 2013, 496(7446): 498-503. doi: 10.1038/nature12111
|
[41] |
PARNG C, SENG W L, SEMINO C, et al. Zebrafish: A preclinical model for drug screening [J]. Assay and Drug Development Technologies, 2002, 1(1): 41-48. doi: 10.1089/154065802761001293
|
[42] |
NAGEL R. DarT: The embryo test with the zebrafish Danio rerio - a general model in ecotoxicology and toxicology [J]. Altex-Alternativen Zu Tierexperimenten, 2002, 19: 38-48.
|
[43] |
NORTON W, BALLY-CUIF L. Adult zebrafish as a model organism for behavioural genetics [J]. Bmc Neuroscience, 2010, 11: 90. doi: 10.1186/1471-2202-11-90
|
[44] |
CHAI T, CUI F, MU X, et al. Stereoselective induction by 2,2',3,4',6-pentachlorobiphenyl in adult zebrafish (Danio rerio): Implication of chirality in oxidative stress and bioaccumulation [J]. Environmental Pollution, 2016, 215: 66-76. doi: 10.1016/j.envpol.2016.04.075
|
[45] |
HENRY T R, SPITSBERGEN J M, HORNUNG M W, et al. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio) [J]. Toxicology and Applied Pharmacology, 1997, 142(1): 56-68. doi: 10.1006/taap.1996.8024
|
[46] |
PLANCHART A, MATTINGLY C J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Upregulates FoxQ1b in Zebrafish Jaw Primordium [J]. Chemical Research in Toxicology, 2010, 23(3): 480-487. doi: 10.1021/tx9003165
|
[47] |
LUO J J, SU D S, XIE S L, et al. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish [J]. The FASEB Journal, 2018, 32(5): 2814-2826. doi: 10.1096/fj.201701171R
|
[48] |
PLAVICKI J, HOFSTEEN P, PETERSON R E, et al. Dioxin inhibits zebrafish epicardium and proepicardium development [J]. Toxicological Sciences, 2013, 131(2): 558-567. doi: 10.1093/toxsci/kfs301
|
[49] |
ANTKIEWICZ D S, BURNS C G, CARNEY S A, et al. Heart malformation is an early response to TCDD in embryonic zebrafish [J]. Toxicological Sciences, 2005, 84(2): 368-377. doi: 10.1093/toxsci/kfi073
|
[50] |
LEMA S C, SCHULTZ I R, SCHOLZ N L, et al. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47) [J]. Aquatic Toxicology, 2007, 82(4): 296-307. doi: 10.1016/j.aquatox.2007.03.002
|
[51] |
USENKO C Y, ROBINSON E M, USENKO S, et al. PBDE developmental effects on embryonic zebrafish [J]. Environmental Toxicology and Chemistry, 2011, 30(8): 1865-1872. doi: 10.1002/etc.570
|
[52] |
WANG W, ZHAO X, REN X, et al. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage [J]. Aquatic Toxicology (Amsterdam, Netherlands), 2020, 225: 105546. doi: 10.1016/j.aquatox.2020.105546
|
[53] |
XING X, KANG J, QIU J, et al. Waterborne exposure to low concentrations of BDE-47 impedes early vascular development in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2018, 203: 19-27. doi: 10.1016/j.aquatox.2018.07.012
|
[54] |
MCCLAIN V, STAPLETON H M, TILTON F, et al. BDE 49 and developmental toxicity in zebrafish [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2012, 155(2): 253-258.
|
[55] |
XU T, CHEN L, HU C, et al. Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae [J]. Toxicology and Pharmacology, 2013, 35(1): 13-20. doi: 10.1016/j.etap.2012.10.004
|
[56] |
王艳萍, 洪琴, 寇春兆, 等. 多氯联苯暴露对斑马鱼视网膜形态学及CRX基因表达的影响 [J]. 中国儿童保健杂志, 2010, 18(12): 963-966.
WANG Y P, HONG Q, KOU C Z, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish retinal morphology and the expression of CRX gene [J]. Chinese Journal of Child Health Care, 2010, 18(12): 963-966(in Chinese).
|
[57] |
鞠黎, 楼跃, 王艳萍, 等. 多氯联苯暴露对斑马鱼脊柱形态及BMP-2、BMP-4基因表达的影响 [J]. 南京医科大学学报(自然科学版), 2011, 31(9): 1277-1281.
JU L, LOU Y, WANG Y P, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish spinal morphology and the expression of BMP-2 and BMP-4 gene [J]. Journal of Nanjing Medical University (Natural Science), 2011, 31(9): 1277-1281(in Chinese).
|
[58] |
WANG Y P, HONG Q, QIN D N, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish (Danio rerio) retinal development [J]. Journal of Applied Toxicology, 2012, 32(3): 186-193. doi: 10.1002/jat.1650
|
[59] |
JU L, ZHOU Z, JIANG B, et al. miR-21 is involved in skeletal deficiencies of zebrafish embryos exposed to polychlorinated biphenyls [J]. Environment Science and Pollution Research International, 2017, 24(1): 886-891. doi: 10.1007/s11356-016-7874-8
|
[60] |
ZHANG X, HONG Q, YANG L, et al. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae [J]. Ecotoxicology and Environmental Safety, 2015, 118: 133-138. doi: 10.1016/j.ecoenv.2015.04.026
|
[61] |
刘寒, 林红英, 聂芳红, 等. PCB126暴露对斑马鱼胚胎发育及氧化应激的影响 [J]. 毒理学杂志, 2012, 26(1): 9-13.
LIU H, LIN H Y, NIE F H, et al. Developmental toxicity and oxidative stress of PCB126 to zebrafish embryos [J]. Journal of Toxicology, 2012, 26(1): 9-13(in Chinese).
|
[62] |
LI Y, HAN Z, ZHENG X, et al. Comparison of waterborne and in ovo nanoinjection exposures to assess effects of PFOS on zebrafish embryos [J]. Environmental Science and Pollution Research, 2015, 22(3): 2303-2310. doi: 10.1007/s11356-014-3527-y
|
[63] |
SHI X, DU Y, LAM P K S, et al. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS [J]. Toxicology and Applied Pharmacology, 2008, 230(1): 23-32. doi: 10.1016/j.taap.2008.01.043
|
[64] |
SHIMA A, MITANI H. Medaka as a research organism: Past, present and future [J]. Mechanisms of Development, 2004, 121(7/8): 599-604.
|
[65] |
SASADO T, TANAKA M, KOBAYASHI K, et al. The national bioresource project medaka (NBRP Medaka): An integrated bioresource for biological and biomedical sciences [J]. Experimental Animals, 2010, 59(1): 13-23. doi: 10.1538/expanim.59.13
|
[66] |
XU H Y, LI C X, SUKLAI P, et al. Differential sensitivities to dioxin-like compounds PCB 126 and PeCDF between Tg(cyp1a: gfp) transgenic medaka and zebrafish larvae [J]. Chemosphere, 2018, 192: 24-30. doi: 10.1016/j.chemosphere.2017.10.130
|
[67] |
WATSON A T D, PLANCHART A, MATTINGLY C J, et al. Embryonic exposure to TCDD impacts osteogenesis of the axial skeleton in japanese medaka, oryzias latipes [J]. Toxicological Sciences, 2017, 155(2): 485-496. doi: 10.1093/toxsci/kfw229
|
[68] |
DONG W, HINTON D E, KULLMAN S W. TCDD disrupts hypural skeletogenesis during medaka embryonic development [J]. Toxicological Sciences, 2012, 125(1): 91-104. doi: 10.1093/toxsci/kfr284
|
[69] |
KAWAMURA T, YAMASHITA I. Aryl hydrocarbon receptor is required for prevention of blood clotting and for the development of vasculature and bone in the embryos of medaka fish, Oryzias latipes [J]. Zoology Science, 2002, 19(3): 309-319. doi: 10.2108/zsj.19.309
|
[70] |
CANTRELL S M, JOY-SCHLEZINGER J, STEGEMAN J J, et al. Correlation of 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced apoptotic cell death in the embryonic vasculature with embryotoxicity [J]. Toxicology and Applied Pharmacology, 1998, 148(1): 24-34. doi: 10.1006/taap.1997.8309
|
[71] |
KIM Y, COOPER K R. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) in the embryos and newly hatched larvae of the Japanese medaka (Oryzias latipes) [J]. Chemosphere, 1999, 39(3): 527-538. doi: 10.1016/S0045-6535(98)00603-1
|
[72] |
HUANG Q, FANG C, WU X, et al. Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma) [J]. Aquatic Toxicology, 2011, 105(1/2): 71-77.
|
[73] |
QIU X, KIM S, KANG I J, et al. Combined toxicities of tributyltin and polychlorinated biphenyls on the development and hatching of Japanese medaka (Oryzias latipes) embryos via in ovo nanoinjection [J]. Chemosphere, 2019, 225: 927-934. doi: 10.1016/j.chemosphere.2019.03.104
|
[74] |
QIU X, IWASAKI N, CHEN K, et al. Tributyltin and perfluorooctane sulfonate play a synergistic role in promoting excess fat accumulation in Japanese medaka (Oryzias latipes) via in ovo exposure [J]. Chemosphere, 2019, 220: 687-695. doi: 10.1016/j.chemosphere.2018.12.191
|
[75] |
VILLALOBOS S A, PAPOULIAS D M, PASTVA S D, et al. Toxicity of o,p'-DDE to medaka d-rR strain after a one-time embryonic exposure by in ovo nanoinjection: an early through juvenile life cycle assessment [J]. Chemosphere, 2003, 53(8): 819-826. doi: 10.1016/S0045-6535(03)00583-6
|
[76] |
METCALFE T L, METCALFE C D, KIPARISSIS Y, et al. Gonadal development and endocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p'-DDT in water or through maternal transfer [J]. Environmental Toxicology and Chemistry, 2000, 19(7): 1893-1900. doi: 10.1002/etc.5620190725
|
[77] |
ZHANG Z, HU J. Effects of p,p'-DDE exposure on gonadal development and gene expression in Japanese medaka (Oryzias latipes) [J]. Journal of Environmental Sciences, 2008, 20(3): 347-352. doi: 10.1016/S1001-0742(08)60054-6
|
[78] |
秦占芬, 徐晓白. 非洲爪蟾在生态毒理学研究中的应用: 概述和实验动物质量控制 [J]. 科学通报, 2006, 51(8): 873-878. doi: 10.3321/j.issn:0023-074X.2006.08.001
QIN Z F, XU X B. Application of Xenopus laevis in ecotoxicology research: overview and quality control of laboratory animals [J]. Chinese Science Bulletin, 2006, 51(8): 873-878(in Chinese). doi: 10.3321/j.issn:0023-074X.2006.08.001
|
[79] |
WOLMARANS N J, BERVOETS L, MEIRE P, et al. Current status and future prognosis of malaria vector control pesticide Ecotoxicology and Xenopus sp [J]. Reviews of Environmental Contamination and Toxicology, 2020, 252: 131-171.
|
[80] |
GUTLEB A C, APPELMAN J, BRONKHORST M C, et al. Delayed effects of pre- and early-life time exposure to polychlorinated biphenyls on tadpoles of two amphibian species (Xenopus laevis and Rana temporaria) [J]. Environmental Toxicology and Pharmacology, 1999, 8(1): 1-14. doi: 10.1016/S1382-6689(99)00023-X
|
[81] |
周景明, 秦晓飞, 秦占芬, 等. 多氯联苯(Aroclor 1254)对非洲爪蟾变态发育的影响 [J]. 生态毒理学报, 2007, 2(1): 111-116.
ZHOU J M, QIN X F, QIN Z F, et al. Effects of polychlorinated biphenyls (Aroclor 1254) on metamorphic development of Xenopus laevis [J]. Asian Journal of Ecotoxicology, 2007, 2(1): 111-116(in Chinese).
|
[82] |
周景明, 秦占芬, 徐晓白. 多氯联苯对非洲爪蟾变态发育的影响研究 [J]. 动物医学进展, 2007, 28(7): 1-6. doi: 10.3969/j.issn.1007-5038.2007.07.001
ZHOU J M, QIN Z F, XU X B. Effects of polychlorinated biphenyl on the developmental by metamorphosis of Xenopus Laevis [J]. Progress in Veterinary Medicine, 2007, 28(7): 1-6(in Chinese). doi: 10.3969/j.issn.1007-5038.2007.07.001
|
[83] |
GILLARDIN V, SILVESTRE F, DIEU M, et al. Protein expression profiling in the African clawed frog Xenopus laevis tadpoles exposed to the polychlorinated biphenyl mixture aroclor 1254 [J]. Molecular and Cellular Proteomics, 2009, 8(4): 596-611. doi: 10.1074/mcp.M800323-MCP200
|
[84] |
FISHER M A, JELASO A M, PREDENKIEWICZ A, et al. Exposure to the polychlorinated biphenyl mixture Aroclor (R) 1254 alters melanocyte and tail muscle morphology in developing Xenopus laevis tadpoles [J]. Environmental Toxicology and Chemistry, 2003, 22(2): 321-328. doi: 10.1002/etc.5620220212
|
[85] |
QIN Z F, QIN X F, YANG L, et al. Feminizing/demasculinizing effects of polychlorinated biphenyls on the secondary sexual development of Xenopus laevis [J]. Aquatic Toxicology, 2007, 84(3): 321-327. doi: 10.1016/j.aquatox.2007.06.011
|
[86] |
LAVINE J A, ROWATT A J, KLIMOVA T, et al. Aryl hydrocarbon receptors in the frog Xenopus laevis: Two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Toxicological Sciences, 2005, 88(1): 60-72. doi: 10.1093/toxsci/kfi228
|
[87] |
PHILIPS B H, SUSMAN T C, POWELL W H. Developmental differences in elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during Xenopus laevis development [J]. Marine Environmental Research, 2006, 62(Suppl): 34-37.
|
[88] |
SAKAMOTO M K, MIMA S, TANIMURA T. Apoptosis of the intestinal principal cells of Xenopus larvae exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Journal of Environmental Pathology Toxicology and Oncology, 1999, 18(4): 289-295.
|
[89] |
BROWN S B, ADAMS B A, CYR D G, et al. Contaminant effects on the teleost fish thyroid [J]. Environmental Toxicology and Chemistry, 2004, 23(7): 1680-1701. doi: 10.1897/03-242
|
[90] |
陈蝶, 高明, 吴南翔. 持久性有机污染物的毒性及其机制研究进展 [J]. 环境与职业医学, 2018, 35(6): 558-565.
CHEN D, GAO M, WU N X. Progress on toxicity and mechanisms of persistent organic pollutants [J]. Journal of Environmental & Occupational Medicine, 2018, 35(6): 558-565(in Chinese).
|
[91] |
SOFFKER M, TYLER C R. Endocrine disrupting chemicals and sexual behaviors in fish - a critical review on effects and possible consequences [J]. Critical Reviews in Toxicology, 2012, 42(8): 653-668. doi: 10.3109/10408444.2012.692114
|
[92] |
CABALLERO-GALLARDO K, OLIVERO-VERBEL J, FREEMAN J L. Toxicogenomics to evaluate endocrine disrupting effects of environmental chemicals using the Zebrafish Model [J]. Current Genomics, 2016, 17(6): 515-527. doi: 10.2174/1389202917666160513105959
|
[93] |
DAOUK T, LARCHER T, ROUPSARD F, et al. Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability [J]. Aquatic Toxicology, 2011, 105(3/4): 270-278.
|
[94] |
谭燕, 李远友. 鱼类在内分泌干扰研究中的应用 [J]. 水产科学, 2006, 25(11): 583-587. doi: 10.3969/j.issn.1003-1111.2006.11.013
TAN Y, LI Y Y. Application of fish in the study of endocrine disruption [J]. Fisheries Science, 2006, 25(11): 583-587(in Chinese). doi: 10.3969/j.issn.1003-1111.2006.11.013
|
[95] |
黄苑, 苏晓鸥, 王瑞国, 等. 多氯联苯羟基化代谢物及其雌激素效应研究进展 [J]. 生态毒理学报, 2018, 13(5): 58-68. doi: 10.7524/AJE.1673-5897.20180111001
HUANG Y, SU X O, WANG R G, et al. Advances on hydroxylated polychlorinated biphenyls metabolites and the estrogenic effects [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 58-68(in Chinese). doi: 10.7524/AJE.1673-5897.20180111001
|
[96] |
QUINTANEIRO C, SOARES A, COSTA D, et al. Effects of PCB-77 in adult zebrafish after exposure during early life stages [J]. Journal of Environmental Science And Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2019, 54(5): 478-483.
|
[97] |
CHEN X, WALTER K M, MILLER G W, et al. Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls [J]. Biomedical Chromatography, 2018, 32(6): e4185. doi: 10.1002/bmc.4185
|
[98] |
KRAUGERUD M, DOUGHTY R W, LYCHE J L, et al. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2012, 116-117: 16-23. doi: 10.1016/j.aquatox.2012.02.031
|
[99] |
HUANG Y, ZHU G, PENG L, et al. Effect of 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) on sexual behaviors and reproductive function in male zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2015, 111: 102-108. doi: 10.1016/j.ecoenv.2014.09.037
|
[100] |
余丽琴, 陈联国, 王蔷薇, 等. 阻燃剂对斑马鱼的传递毒性效应-影响子代健康// 中国化学会. 中国化学会第29届学术年会摘要集——第20分会: 环境与健康[C]. 中国化学会: 中国化学会, 2014: 1.
YU L Q, CHEN L G, WANG Q W, et al. Transgenerational toxicity of PBDEs and TDCPP in zebrafish[A]. Chinese Chemical Society. Abstracts of the 29th Annual Meeting of the Chinese Chemical Society-Session 20: Environment and Health[C]. Chinese Chemical Society: Chinese Chemical Society, 2014: 1(in Chinese).
|
[101] |
HE J, YANG D, WANG C, et al. Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring [J]. Ecotoxicology, 2011, 20(8): 1813-1822. doi: 10.1007/s10646-011-0720-3
|
[102] |
YU L, DENG J, SHI X, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae [J]. Aquatic Toxicology, 2010, 97(3): 226-233. doi: 10.1016/j.aquatox.2009.10.022
|
[103] |
KUIPER R V, VETHAAK A D, CANTON R F, et al. Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish (Danio rerio) [J]. Chemosphere, 2008, 73(2): 195-202. doi: 10.1016/j.chemosphere.2008.04.079
|
[104] |
SUN W, JIA Y, DING X, et al. Combined effects of pentachlorophenol and its byproduct hexachlorobenzene on endocrine and reproduction in zebrafish [J]. Chemosphere, 2019, 220: 216-226. doi: 10.1016/j.chemosphere.2018.12.100
|
[105] |
HEIDEN T C K, STRUBLE C A, RISE M L, et al. Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: Insights into TCDD-induced endocrine disruption and reproductive toxicity [J]. Reproductive Toxicology, 2008, 25(1): 47-57. doi: 10.1016/j.reprotox.2007.07.013
|
[106] |
DU G, HU J, HUANG H, et al. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo [J]. Environmental Toxicology and Chemistry, 2013, 32(2): 353-360. doi: 10.1002/etc.2034
|
[107] |
SHI X, LIU C, WU G, et al. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae [J]. Chemosphere, 2009, 77(7): 1010-1018. doi: 10.1016/j.chemosphere.2009.07.074
|
[108] |
DU Y, SHI X, LIU C, et al. Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: A partial life-cycle test [J]. Chemosphere, 2009, 74(5): 723-729. doi: 10.1016/j.chemosphere.2008.09.075
|
[109] |
MONTEIRO M S, PAVLAKI M, FAUSTINO A, et al. Endocrine disruption effects of p,p'-DDE on juvenile zebrafish [J]. Journal of Applied Toxicology, 2015, 35(3): 253-260. doi: 10.1002/jat.3014
|
[110] |
RALDUA D, BABIN P J. Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function [J]. Environmental Science & Technology, 2009, 43(17): 6844-6850.
|
[111] |
WU L, RU H, NI Z, et al. Comparative thyroid disruption by o,p'-DDT and p,p'-DDE in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2019, 216: 105280. doi: 10.1016/j.aquatox.2019.105280
|
[112] |
TIMME-LARAGY A R, SANT K E, ROUSSEAU M E, et al. Deviant development of pancreatic beta cells from embryonic exposure to PCB-126 in zebrafish [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2015, 178: 25-32.
|
[113] |
CHEN H, HU J, YANG J, et al. Generation of a fluorescent transgenic zebrafish for detection of environmental estrogens [J]. Aquatic Toxicology, 2010, 96(1): 53-61. doi: 10.1016/j.aquatox.2009.09.015
|
[114] |
GORELICK D A, HALPERN M E. Visualization of estrogen receptor transcriptional activation in zebrafish [J]. Endocrinology, 2011, 152(7): 2690-2703. doi: 10.1210/en.2010-1257
|
[115] |
LIN C Y, CHIANG C Y, TSAI H J. Zebrafish and Medaka: New model organisms for modern biomedical research [J]. Journal of Biomedical Science, 2016, 23: 11. doi: 10.1186/s12929-016-0226-7
|
[116] |
OKUYAMA T, YOKOI S, TAKEUCHI H. Molecular basis of social competence in medaka fish [J]. Development Growth & Differentiation, 2017, 59(4): 211-218.
|
[117] |
NAKAYAMA K, OSHIMA Y, NAGAFUCHI K, et al. Early-life-stage toxicity in offspring from exposed parent medaka, Oryzias latipes, to mixtures of tributyltin and polychlorinated biphenyls [J]. Environmental Toxicology and Chemistry, 2005, 24(3): 591-596. doi: 10.1897/04-157R.1
|
[118] |
NAKAYAMA K, SEI N, HANDOH I C, et al. Effects of polychlorinated biphenyls on liver function and sexual characteristics in Japanese medaka (Oryzias latipes) [J]. Marine Pollution Bulletin, 2011, 63(5-12): 366-369. doi: 10.1016/j.marpolbul.2011.01.015
|
[119] |
YUM S, WOO S, KAGAMI Y, et al. Changes in gene expression profile of medaka with acute toxicity of Arochlor 1260, a polychlorinated biphenyl mixture [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2010, 151(1): 51-56.
|
[120] |
UCHIDA M, NAKAMURA H, KAGAMI Y, et al. Estrogenic effects of o,p'-DDT exposure in Japanese medaka (Oryzias latipes) [J]. Journal of Toxicological Sciences, 2010, 35(4): 605-608. doi: 10.2131/jts.35.605
|
[121] |
PAPOULIAS D M, VILLALOBOS S A, MEADOWS J, et al. In ovo exposure to o,p'-DDE affects sexual development but not sexual differentiation in Japanese medaka (Oryzias latipes) [J]. Environmental Health Perspectives, 2003, 111(1): 29-32. doi: 10.1289/ehp.5540
|
[122] |
SUN J, WANG C, PENG H, et al. p,p'-DDE Induces Gonadal Intersex in Japanese Medaka (Oryzias latipes) at Environmentally Relevant Concentrations: Comparison with o,p'-DDT [J]. Environmental Science & Technology, 2016, 50(1): 462-469.
|
[123] |
TSE A C K, LAU K Y T, GE W, et al. A rapid screening test for endocrine disrupting chemicals using primary cell culture of the marine medaka [J]. Aquatic Toxicology, 2013, 144: 50-58.
|
[124] |
ZHAO Y B, LUO K, FAN Z L, et al. Modulation of Benzo a pyrene-Induced Toxic Effects in Japanese Medaka (Oryzias latipes) by 2,2', 4,4'-Tetrabromodiphenyl Ether [J]. Environmental Science & Technology, 2013, 47(22): 13068-13076.
|
[125] |
LEE J W, LEE J W, SHIN Y J, et al. Multi-generational xenoestrogenic effects of Perfluoroalkyl acids (PFAAs) mixture on Oryzias latipes using a flow-through exposure system [J]. Chemosphere, 2017, 169: 212-223. doi: 10.1016/j.chemosphere.2016.11.035
|
[126] |
KANG J S, AHN T G, PARK J W. Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes) [J]. Journal of Hazardous Materials, 2019, 368: 97-103. doi: 10.1016/j.jhazmat.2019.01.034
|
[127] |
GUTLEB A C, APPELMAN J, BRONKHORST M, et al. Effects of oral exposure to polychlorinated biphenyls (PCBs) on the development and metamorphosis of two amphibian species (Xenopus laevis and Rana temporaria) [J]. Science of The Total Environment, 2000, 262(1/2): 147-157.
|
[128] |
LEHIGH SHIREY E A, JELASO LANGERVELD A, MIHALKO D, et al. Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis [J]. Environmental Research, 2006, 102(2): 205-214. doi: 10.1016/j.envres.2006.04.001
|
[129] |
GUTLEB A C, MOSSINK L, SCHRIKS M, et al. Delayed effects of environmentally relevant concentrations of 3,3', 4,4'-tetrachlorobiphenyl (PCB-77) and non-polar sediment extracts detected in the prolonged-FETAX [J]. Science of the Total Environment, 2007, 381(1/3): 307-315.
|
[130] |
QIN Z F, ZHOU J M, CHU S G, et al. Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis [J]. Environmental Health Perspectives, 2003, 111(4): 553-556. doi: 10.1289/ehp.5620
|
[131] |
李焕婷, 秦占芬, 秦晓飞, 等. 多氯联苯和多溴联苯醚对非洲爪蟾生长发育和性腺发育的影响 [J]. 西北农林科技大学学报(自然科学版), 2009, 37(4): 31-36.
LI H T, QIN Z F, QIN X F, et al. Effects of polychlorinated biphenyls and polybrominated diphenyl ethers on the growth and gonadal development of African clawed frogs(Xenopus laevis) [J]. Journal of Northwest A& F University (Natural Science Edition), 2009, 37(4): 31-36(in Chinese).
|
[132] |
TAFT J D, COLONNETTA M M, SCHAFER R E, et al. Dioxin Exposure alters molecular and morphological responses to thyroid hormone in Xenopus laevis cultured cells and Prometamorphic Tadpoles [J]. Toxicological Sciences, 2018, 161(1): 196-206. doi: 10.1093/toxsci/kfx213
|
[133] |
YOST A T, THORNTON L M, VENABLES B J, et al. Dietary exposure to polybrominated diphenyl ether 47 (BDE-47) inhibits development and alters thyroid hormone-related gene expression in the brain of Xenopus laevis tadpoles [J]. Environmental Toxicology and Pharmacology, 2016, 48: 237-244. doi: 10.1016/j.etap.2016.11.002
|
[134] |
HOFFMANN F, KLOAS W. p,p'-Dichlordiphenyldichloroethylene (p,p'-DDE) can elicit antiandrogenic and estrogenic modes of action in the amphibian Xenopus laevis [J]. Physiology & Behavior, 2016, 167: 172-178.
|
[135] |
LONGNECKER M P, WOLFF M S, GLADEN B C, et al. Comparison of polychlorinated biphenyl levels across studies of human neurodevelopment [J]. Environmental Health Perspectives, 2003, 111(1): 65-70. doi: 10.1289/ehp.5463
|
[136] |
CHEN Y C, YU M L, ROGAN W J, et al. A 6-year follow-up of behavior and activity disorders in the Taiwan Yu-cheng children [J]. American Journal of Public Health, 1994, 84(3): 415-421. doi: 10.2105/AJPH.84.3.415
|
[137] |
PATANDIN S, LANTING C I, MULDER P G H, et al. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age [J]. Journal of Pediatrics, 1999, 134(1): 33-41. doi: 10.1016/S0022-3476(99)70369-0
|
[138] |
NISHIDA N, FARMER J D, KODAVANTI P R S, et al. Effects of acute and repeated exposures to aroclor 1254 in adult rats: Motor activity and flavor aversion conditioning [J]. Fundamental and Applied Toxicology, 1997, 40(1): 68-74. doi: 10.1006/faat.1997.2352
|
[139] |
TIEDEKEN J A, RAMSDELL J S. DDT exposure of zebrafish embryos enhances seizure susceptibility: relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions [J]. Environmental Health Perspectives, 2009, 117(1): 68-73. doi: 10.1289/ehp.11685
|
[140] |
SOUTH J, BOTHA T L, WOLMARANS N J, et al. Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour [J]. Ecotoxicology, 2019, 28(7): 771-780. doi: 10.1007/s10646-019-02075-5
|
[141] |
TIMME-LARAGY A R, LEVIN E D, DI GIULIO R T. Developmental and behavioral effects of embryonic exposure to the polybrominated diphenylether mixture DE-71 in the killifish (Fundulus heteroclitus) [J]. Chemosphere, 2006, 62(7): 1097-1104. doi: 10.1016/j.chemosphere.2005.05.037
|
[142] |
BAILEY J, OLIVERI A, LEVIN E D. Zebrafish model systems for developmental neurobehavioral toxicology [J]. Birth Defects Research Part C-Embryo Today-Reviews, 2013, 99(1): 14-23. doi: 10.1002/bdrc.21027
|
[143] |
DE ESCH C, SLIEKER R, WOLTERBEEK A, et al. Zebrafish as potential model for developmental neurotoxicity testing: A mini review [J]. Neurotoxicology and Teratology, 2012, 34(6): 545-553. doi: 10.1016/j.ntt.2012.08.006
|
[144] |
TON C, LIN Y X, WILLETT C. Zebrafish as a model for developmental neurotoxicity testing [J]. Birth Defects Research Part a-Clinical and Molecular Teratology, 2006, 76(7): 553-567. doi: 10.1002/bdra.20281
|
[145] |
TANAKA Y, FUJIWARA M, SHINDO A, et al. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos [J]. Chemosphere, 2018, 193: 1207-1215. doi: 10.1016/j.chemosphere.2017.11.138
|
[146] |
KREILING J A, CRETON R, REINISCH C. Early embryonic exposure to polychlorinated biphenyls disrupts heat-shock protein 70 cognate expression in zebrafish [J]. Journal of Toxicology and Environmental Health, 2007, 70(12): 1005-1013. doi: 10.1080/15287390601171868
|
[147] |
GONZALEZ S T, REMICK D, CRETON R, et al. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish [J]. Neurotoxicology, 2016, 53: 93-101. doi: 10.1016/j.neuro.2015.12.018
|
[148] |
CHEN L, HUANG C, HU C, et al. Acute exposure to DE-71: effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae [J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2338-2344. doi: 10.1002/etc.1958
|
[149] |
CHEN L, YU K, HUANG C, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in Zebrafish Larvae [J]. Environmental Science & Technology, 2012, 46(17): 9727-9734.
|
[150] |
ZHENG S, LIU C, HUANG Y, et al. Effects of 2,2', 4,4'-tetrabromodiphenyl ether on neurobehavior and memory change and bcl-2, c-fos, grin1b and lingo1b gene expression in male zebrafish (Danio rerio) [J]. Toxicology and Applied Pharmacology, 2017, 333: 10-16. doi: 10.1016/j.taap.2017.08.004
|
[151] |
CHOU C T, HSIAO Y C, KO F C, et al. Chronic exposure of 2,2', 4,4'-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2010, 98(4): 388-395. doi: 10.1016/j.aquatox.2010.03.012
|
[152] |
CHEN X, HUANG C, WANG X, et al. BDE-47 disrupts axonal growth and motor behavior in developing zebrafish [J]. Aquatic Toxicology, 2012, 120: 35-44.
|
[153] |
HILL A, HOWARD C V, STRAHLE U, et al. Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations [J]. Toxicological Sciences, 2003, 76(2): 392-399. doi: 10.1093/toxsci/kfg241
|
[154] |
NAKAYAMA K, OSHIMA Y, HIRAMATSU K, et al. Alteration of general behavior of male medaka, Oryzias latipes, exposed to tributyltin and/or polychlorinated biphenyls [J]. Journal of the Faculty of Agriculture Kyushu University, 2004, 49(1): 85-92. doi: 10.5109/4568
|
[155] |
NAKAYAMA K, OSHIMA Y, HIRAMATSU K, et al. Effects of polychlorinated biphenyls on the schooling behavior of Japanese medaka (Oryzias latipes) [J]. Environmental Toxicology and Chemistry, 2005, 24(10): 2588-2593. doi: 10.1897/04-518R2.1
|
[156] |
FERNANDES E C A, HENDRIKS H S, VAN KLEEF R G D M, et al. Activation and Potentiation of Human GABA(A) Receptors by Non-Dioxin-Like PCBs Depends on Chlorination Pattern [J]. Toxicological Sciences, 2010, 118(1): 183-190. doi: 10.1093/toxsci/kfq257
|
[157] |
FERNANDES E C A, HENDRIKS H S, VAN KLEEF R G D M, et al. Potentiation of the human GABA(A) receptor As a novel mode of action of lower-chlorinated non-dioxin-like PCBs [J]. Environmental Science & Technology, 2010, 44(8): 2864-2869.
|
[158] |
JELASO A M, LEHIGH-SHIREY E, MEANS J, et al. Gene expression patterns predict exposure to PCBs in developing Xenopus laevis tadpoles [J]. Environmental and Molecular Mutagenesis, 2003, 42(1): 1-10. doi: 10.1002/em.10173
|
[159] |
JELASO A M, DELONG C, MEANS J, et al. Dietary exposure to aroclor 1254 alters gene expression in Xenopus laevis frogs [J]. Environmental Research, 2005, 98(1): 64-72. doi: 10.1016/j.envres.2004.05.014
|
[160] |
HENDRIKS H S, FERNANDES E C A, BERGMAN A, et al. PCB-47, PBDE-47, and 6-OH-PBDE-47 differentially modulate human GABA(A) and alpha(4)beta(2) nicotinic acetylcholine receptors [J]. Toxicological Sciences, 2010, 118(2): 635-642. doi: 10.1093/toxsci/kfq284
|
[161] |
MURENZI E, TOLTIN A C, SYMINGTON S B, et al. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels [J]. Neurotoxicology, 2017, 60: 260-273. doi: 10.1016/j.neuro.2016.04.004
|
[162] |
梁艺怀, 张京佶, 张琨, 等. 稀有鮈鲫作为鱼类幼体生长试验受试鱼种的适用性研究 [J]. 中国实验动物学报, 2018, 26(5): 618-623. doi: 10.3969/j.issn.1005-4847.2018.05.013
LIANG Y H, ZHAGN J J, ZHAGN K, et al. Applicability of Chinese rare minnows for the juvenile fish growth test [J]. Acta Laboratoriun Animals Scientia Sinica, 2018, 26(5): 618-623(in Chinese). doi: 10.3969/j.issn.1005-4847.2018.05.013
|
[163] |
张京佶, 殷浩文. 有关稀有鮈鲫作为本土模式生物的争议及辨析 [J]. 生态毒理学报, 2017, 12(2): 44-45. doi: 10.7524/AJE.1673-5897.20161126002
ZHANG J J, YIN H W. Is Chinese rare minnow a qualified model organism in China? [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 44-45(in Chinese). doi: 10.7524/AJE.1673-5897.20161126002
|
[164] |
刘汉伟, 章跃龙, 乐琪君, 等. 环磷酰胺对稀有鮈鲫的遗传毒性 [J]. 中国口岸科学技术, 2020(1): 54-57.
LIU H W, ZHANG Y L, LE Q J, et al. Genotoxicity of cyclophosphamide to gobiocypris rarus [J]. Chinese Port Science and Technology, 2020(1): 54-57(in Chinese).
|
[165] |
张京佶, 王绿平, 张琨. 稀有鮈鲫在鱼类胚胎急性毒性试验中的适用性研究 [J]. 环境科学研究, 2019, 32(7): 1162-1169.
ZHANG J J, WANG L P, ZHANG K. Applicability of Gobiocypris rarus in Fish Embryo Acute Toxicity Test [J]. Research of Environmental Science, 2019, 32(7): 1162-1169(in Chinese).
|
[166] |
ZHU L, LI W, ZHA J, et al. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): Docking study, hormone levels, histology, and transcriptional responses [J]. Ecotoxicology and Environmental Safety, 2019, 185: 109683. doi: 10.1016/j.ecoenv.2019.109683
|
[167] |
郭勇勇, 周炳升. 苯并芘对稀有鮈鲫的内分泌干扰效应研究 [J]. 环境科学学报, 2015, 35(9): 3006-3012.
GUO Y Y, ZHOU B S. Endocrine disruption effects of benzo (a)pyrene on Chinese rare minnow (Gobiocypris rarus) [J]. Acta Scientiae Circumstantiae, 2015, 35(9): 3006-3012(in Chinese).
|
[168] |
LI W, ZHU L, ZHA J, et al. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcription of thyroid hormone pathway and spermatogenesis associated genes in Chinese rare minnow (Gobiocypris rarus) [J]. Environmental Toxicology, 2014, 29(1): 1-9. doi: 10.1002/tox.20767
|
[169] |
ZHU B, LIU L, LI D L, et al. Developmental toxicity in rare minnow (Gobiocypris rarus) embryos exposed to Cu, Zn and Cd [J]. Ecotoxicology and Environmental Safety, 2014, 104: 269-277. doi: 10.1016/j.ecoenv.2014.03.018
|
[170] |
SHI L, WANG N, HU X, et al. Acute toxic effects of lead (Pb2+) exposure to rare minnow (Gobiocypris rarus) revealed by histopathological examination and transcriptome analysis [J]. Environmental Toxicology and Pharmacology, 2020, 78: 103385. doi: 10.1016/j.etap.2020.103385
|
[171] |
QIU N, SU L, WU B, et al. Chemicals affect color preference in rare minnow (Gobiocypris rarus) [J]. Environment Science and Pollution Research International, 2020, 27(18): 23206-23214. doi: 10.1007/s11356-020-08924-9
|
[172] |
TIAN X, HONG X, YAN S, et al. Neonicotinoids caused oxidative stress and DNA damage in juvenile Chinese rare minnows (Gobiocypris rarus) [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110566. doi: 10.1016/j.ecoenv.2020.110566
|
[173] |
付娟娟, 郭勇勇, 韩建, 等. 苯并芘和邻苯二甲酸二(2-乙基己基)酯复合暴露对稀有鮈鲫的内分泌干扰效应研究 [J]. 生态毒理学报, 2019, 14(6): 93-103.
FU J J, GUO Y Y, HAN J, et al. Endocrine disruption effects of benzo(a) pyrene and di-2-ethylhexyl phthalate on chinese rare minnow(gobiocypris rarus) [J]. Asian Journal of Ecotoxicology, 2019, 14(6): 93-103(in Chinese).
|
[174] |
LIU Y, WANG L, ZHU L, et al. Bisphenol A disturbs transcription of steroidogenic genes in ovary of rare minnow Gobiocypris rarus via the abnormal DNA and histone methylation [J]. Chemosphere, 2020, 240: 124935. doi: 10.1016/j.chemosphere.2019.124935
|
[175] |
CHEN R, HONG X, YAN S, et al. Three organophosphate flame retardants (OPFRs) reduce sperm quality in Chinese rare minnows (Gobiocypris rarus) [J]. Environment Pollution, 2020, 263(Pt A): 114525.
|
[176] |
ZHANG J, ZHANG C, MA D, et al. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus) [J]. Fish & Shellfish Immunology, 2017, 71: 10-18.
|
[177] |
CHEN R, YUAN L, ZHA J, et al. Developmental toxicity and thyroid hormone-disrupting effects of 2, 4-dichloro-6-nitrophenol in Chinese rare minnow (Gobiocypris rarus) [J]. Aquatic Toxicology, 2017, 185: 40-47. doi: 10.1016/j.aquatox.2017.02.005
|
[178] |
范博, 樊明, 刘征涛, 等. 稀有鮈鲫物种敏感性及其在生态毒理学与水质基准中的应用 [J]. 环境科学研究, 2019, 32(7): 1153-1161.
FAN B, FAN M, LIU Z T, et al. Species sensitivity and application in ecotoxicology and water quality criterion for Gobiocypris rarus [J]. Research of Environmental Science, 2019, 32(7): 1153-1161(in Chinese).
|
[179] |
伍辛泷, 黄乾生, 方超, 等. 新兴海洋生态毒理学模式生物——海洋青鳉鱼(Oryzias melastigma) [J]. 生态毒理学报, 2012, 7(4): 345-353.
WU X L, HUANG Q S, FANG C, et al. Emerging model organism in marine ecotoxicology——Oryzias melastigma [J]. Asian Journal of Ecotoxicology, 2012, 7(4): 345-353(in Chinese).
|
[180] |
韩文亮, 郑小燕. 十溴二苯醚及其降解产物对浮游生物的毒性 [J]. 环境科学学报, 2018, 38(2): 821-828.
HAN W L, ZHENG X Y. Toxicity of decabromodiphenyl ether and its degradation products to plankton [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 821-828(in Chinese).
|
[181] |
刘冉, 曹志会, 赵月, 等. PFOA和PFOS对大型蚤急性毒性试验研究 [J]. 安全与环境工程, 2015, 22(4): 51-55+74.
LIU R, CAO Z H, ZHAO Y, et al. Experiment study on acute toxicity of PFOA and PFOS to daphnia magna [J]. Safety and Environmental Engineering, 2015, 22(4): 51-55+74(in Chinese).
|
[182] |
FLAHERTY C M, DODSON S I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction [J]. Chemosphere, 2005, 61(2): 200-207. doi: 10.1016/j.chemosphere.2005.02.016
|
[183] |
畅悦, 冯立芳, 缪炜. 有污染物二氯二苯三氯乙烷、三丁锡和2,3,7,8-四氯二苯并二噁英暴露下的四膜虫毒理因组学研究 [J]. 中国科学: 生命科学, 2011, 41(6): 502-511.
CHANG Y, FENG L F, MIAO W. Toxicogenomic research on tetrahymena thermophila exposed to dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Chinese Bulletin of Life Sciences, 2011, 41(6): 502-511(in Chinese).
|
[184] |
缪炜. 原生动物四膜虫“小材”有“大用” [J]. 生物学通报, 2010, 45(12): 1-4. doi: 10.3969/j.issn.0006-3193.2010.12.001
LIAO W. Protozoan tetrahymena: the great contributions to the fundamental research [J]. Bulletin of Biology, 2010, 45(12): 1-4(in Chinese). doi: 10.3969/j.issn.0006-3193.2010.12.001
|
[185] |
杨扬, 李雅洁, 崔益斌, 等. 3种典型有机污染物对2种水生生物的急性毒性及安全评价 [J]. 环境科学, 2015, 36(8): 3074-3079.
YANG Y, LI Y J, CUI Y B, et al. Acute toxicity and safety assessment of three typical organic pollutants to two aquatic organisms [J]. Environmental Science, 2015, 36(8): 3074-3079(in Chinese).
|
[186] |
QU R J, LIU J Q, WANG L S, et al. The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values [J]. Chemosphere, 2016, 152: 496-502. doi: 10.1016/j.chemosphere.2016.03.024
|
[187] |
TOYOTA K, MCNABB N A, SPYROPOULOS D D, et al. Toxic effects of chemical dispersant Corexit 9500 on water flea Daphnia magna [J]. Journal of Applied Toxicology, 2017, 37(2): 201-206. doi: 10.1002/jat.3343
|
[188] |
LIU Y, WANG L, PAN B, et al. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna [J]. Aquat Toxicol, 2017, 183: 104-113.
|
[189] |
PENG Y, LUO Y, NIE X P, et al. Toxic effects of triclosan on the detoxification system and breeding of Daphnia magna [J]. Ecotoxicology, 2013, 22(9): 1384-1394. doi: 10.1007/s10646-013-1124-3
|
[190] |
YE Q, ZHANG C N, WANG Z L, et al. Induction of oxidative stress, apoptosis and DNA damage by koumine in Tetrahymena thermophila [J]. PloS One, 2019, 14(2): 15.
|
[191] |
廖苑辰, 常叶倩, 徐晨珂, 等. 氧化石墨烯对嗜热四膜虫的毒性效应 [J]. 中国环境科学, 2019, 39(3): 1299-1305. doi: 10.3969/j.issn.1000-6923.2019.03.048
LIAO Y C, CHANG Y Q, XU C K, et al. Toxicity effects of graphene oxide to Tetrahymena thermophila [J]. China Environmental Science, 2019, 39(3): 1299-1305(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.03.048
|
[192] |
柳郁滨, 范学铭, 王哲娟. Cu2+离子对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2010, 26(19): 423-425.
LIU Y B, FAN X M, WANG Z J. Effects of Cu2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2010, 26(19): 423-425(in Chinese).
|
[193] |
孙娜, 王宇佳, 柳郁滨, 等. Hg2+对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2012, 28(17): 143-146. doi: 10.3969/j.issn.1000-6850.2012.17.027
SUN N, WANG Y J, LIU Y B, et al. Effects of Hg2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2012, 28(17): 143-146(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.17.027
|
[194] |
赵双菁, 李艳秋, 柳郁滨, 等. Pb2+对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2012, 28(8): 87-89. doi: 10.3969/j.issn.1000-6850.2012.08.019
ZHAO S R, LIU Y Q, LIU Y B, et al. Effect of Pb2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2012, 28(8): 87-89(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.08.019
|
[195] |
ORTEGA M, ORDONEZ E O, FAVARI L, et al. Biochemical and mitochondrial changes induced by Cd, Fe and Zn in limnodrillus hoffmeisteri [J]. International Journal of Morphology, 2011, 29(2): 412-419. doi: 10.4067/S0717-95022011000200018
|