[1] WANG Z, WALKER G W, MUIRD C G, et al. Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories [J]. Environmental Science & Technology, 2020, 54(5): 2575-2584.
[2] Global Chemicals Outlook II: From legacies to innovative solutions: Implementing the 2030 agenda for sustainable development-Synthesis report[M]. Nairobi: United Nations Environment Programme, 2019: 1-88.
[3] KEITA-QUANE F. UNEP Chemicals' work: breaking the barriers to information access [J]. Toxicology, 2003, 190(1-2): 135-139. doi: 10.1016/S0300-483X(03)00203-8
[4] 罗孝俊, 麦碧娴. 新型持久性有机污染物的生物富集[M]. 北京: 科学出版社, 2017: 1-356. LUO X J, MAI B X. Bioaccumulation of emergying persistent organic pollutants[M]. Beijing: Science Press, 2017: 1-356(in Chinese).
[5] 中华人民共和国生态环境部, 新化学物质环境管理登记指南[R]. 北京, 2020: 1-81. Ministry of Ecology and Environment of the People's Republic of China, Guidelines for environmental management registration of new chemical substances[R]. Beijing, 2020: 1-81(in Chinese).
[6] 陈景文, 全燮. 环境化学[M]. 大连: 大连理工大学出版社, 2009: 1-387. CHEN J W, QUAN X. Environmental chemistry[M]. Dalian: Dalian University of Technology Press, 2009: 1-387(in Chinese).
[7] GOBAS F A, WOLF W D, BURKHARD L P, et al. Revisiting bioaccumulation criteria for POPs and PBT assessments [J]. Integrated Environmental Assessment and Management: An International Journal, 2010, 5(4): 624-637.
[8] EU. Regulation(EC) No. 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorization, and restriction of chemicals(REACH)[S]. Brussels: Official Journal of the EU, 2006.
[9] WOLF W D, COMBER M, DOUBENP, et al. Animal use replacement, reduction, and refinement: Development of an integrated testing strategy for bioconcentration of chemicals in fish [J]. Integrated Environmenta lAssessment and Management, 2007, 3(1): 3-17. doi: 10.1002/ieam.5630030102
[10] OECD. OECD guideline for testing of chemicals 305: Bioconcentration: Flow-through fish test[R]. Paris, 1996: 1-23.
[11] 陈景文, 王中钰, 傅志强. 环境计算化学与毒理学[M]. 北京: 科学出版社, 2018: 1-274. CHEN J W, WANG Z Y, FU Z Q. Environmental computational chemistry and toxicology[M]. Beijing: Science Press, 2018: 1-274(in Chinese).
[12] VEITH G D, DEFOE D L, BERGSTEDT B V. Measuring and estimating the bioconcentration factor of chemicals in fish [J]. Journal of the Fisheries Board of Canada, 1979, 36(9): 1040-1048. doi: 10.1139/f79-146
[13] MEYLAN W M, HOWARD P H, BOETHLING R S, et al. Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient [J]. Environmental Toxicology and Chemistry, 1999, 18(4): 664-672. doi: 10.1002/etc.5620180412
[14] PAVAN M, NETZEVA T I, WORTH A P. Review of literature-based quantitative structure–activity relationship models for bioconcentration [J]. QSAR & Combinatorial Science, 2008, 27: 21-31.
[15] DEARDEN J C, HEWITT M. QSAR modelling of bioconcentration factor using hydrophobicity, hydrogen bonding and topological descriptors [J]. SAR and QSAR in Environmental Research, 2010, 21(7/8): 671-680.
[16] STREMPEL S, NENDZA M, SCHERINGER M, et al. Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals [J]. Environmental Toxicology and Chemistry, 2013, 32(5): 1187-1195. doi: 10.1002/etc.2150
[17] YUAN J, XIE C, ZHANG T, et al. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides [J]. Chemosphere, 2016, 156: 334-340. doi: 10.1016/j.chemosphere.2016.05.002
[18] AI H X, WU X W, ZHANG L, et al. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods [J]. Ecotoxicology and Environmental Safety, 2019, 179: 71-78. doi: 10.1016/j.ecoenv.2019.04.035
[19] MILLER T H, GALLIDABINO M D, MACRAE J I, et al. Prediction of bioconcentration factors in fish and invertebrates using machine learning [J]. Science of the Total Environment, 2019, 648: 80-89. doi: 10.1016/j.scitotenv.2018.08.122
[20] VALSECCHI C, GRISONI F, CONSONNI V, et al. Consensus versus individual QSARs in classification: Comparison on a large-scale case study [J]. Journal of Chemical Information and Modeling, 2020, 60(3): 1215-1223. doi: 10.1021/acs.jcim.9b01057
[21] LI X, KLEINSTREUER N C, FOURCHES D. Hierarchical quantitative structure–activity relationship modeling approach for integrating binary, multiclass and regression models of acute oral systemic toxicity [J]. Chemical Research in Toxicology, 2020, 33(2): 353-366. doi: 10.1021/acs.chemrestox.9b00259
[22] SHEFFIELD T Y, JUDSON R S. Ensemble QSAR modeling to predict multispecies fish toxicity lethal concentrations and points of departure [J]. Environmental Science & Technology, 2019, 53(21): 12793-12802.
[23] OECD. Guideline document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models. Environment Health and Safety Publications Series on Testing and Assessment No. 69[R]. Paris: OECD, 2007: 1-154.
[24] ARNOT J A, GOBAS F A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms [J]. Environmental Reviews, 2006, 14(4): 257-297. doi: 10.1139/a06-005
[25] LUNGHINI F, MARCOU G, AZAM P, et al. QSPR models for bioconcentration factor (BCF): Are they able to predict data of industrial interest? [J]. SAR and QSAR in Environmental Research, 2019, 30(7): 507-524. doi: 10.1080/1062936X.2019.1626278
[26] NITE (Japanese National Institute of Technology and Evaluation). Data from: Biodegradation and bioconcentration data under CSCL National Institute of Technology and Evaluation [DB/OL]. [2020-01-12]. https://www.nite.go.jp/en/index.html.
[27] CEFIC LRI (European Chemical Industry Council Long Range Initiative). Data from: Bioconcentration factor database, European Chemical Industry Council Long range research initiative [DB/OL]. [2020-01-12]. http://cefic-lri.org/.
[28] DSL (Canadian Domestic Substance List). Data from: Canadian domestic substances list (DSL), Environment and Climate Change Canada [DB/OL]. [2020-01-12]. https://www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/substances-list.html#toc0.
[29] ECOTOX EPA (ECOTOXicology knowledgebase of the US Environmental Protection Agency). Data from: ECOTOX Knowledgebase, US Environmental Protection Agency [DB/OL]. [2020-01-12]. https://cfpub.epa.gov/ecotox/.
[30] QSAR Toolbox v 4.1. OASIS Laboratory of mathematical chemistry, Burgas, BG [DB/OL]. [2020-01-12]. http://oasis-lmc.org/products/software/toolbox.aspx.
[31] OECD (Organisation for Economic Co-Operation and Development). Data from: EChemPortal: Global portal to information on chemical substances, Organisation for Economic Co-operation Development [DB/OL]. [2020-01-12]. https://www.echemportal.org/echemportal/.
[32] ISO16269-7-2001, Statistical interpretation of data. Part 7: Median; Estimation and confidence intervals[S]. Geneva: International Organization for Standardization, 2001.
[33] DRAGON(SoftwareforMolecularDescriptorCalculation), Version 6.0[CP], 2012. http://www.talete.mi.it/.
[34] SINGH B K, VERMA K, THOKE A S. Investigations on impact of feature normalization techniques on classifier's performance in breast tumor classification [J]. International Journal of Computer Applications, 2015, 116(19): 11-15. doi: 10.5120/20443-2793
[35] 郑玉婷. 有机化学品鱼类生物富集因子QSAR模型的构建[D]. 大连: 大连理工大学, 2014: 1-60. ZHENG Y T. Development of QSAR models on bioconcentration factors of chemicals in fish[D]. Dalian: Dalian University of Technology, 2014: 1-60(in Chinese).
[36] NATHANS L L, OSWALDF L, NIMON K. Interpreting multiple linear regression: A guidebook of variable importance [J]. Practical Assessment, Research, and Evaluation, 2012, 17(1): 1-19.
[37] CORTES C, VAPNIK V. Support-vector networks [J]. Machine Learning, 1995(20): 273-297.
[38] BREIMAN L. Random forests [J]. Machine Learning, 2001(45): 5-32.
[39] ATHEY S, TIBSHIRANI J, WAGER S. Generalized random forests [J]. Annals of Statistics, 2019, 47(2): 1148-1178.
[40] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine [J]. Annals of Statistics, 2001, 29(5): 1189-1232. doi: 10.1214/aos/1013203450
[41] CHEN T Q, GUESTRIN C. Xgboost: A scalable tree boosting system//Assoc Comp Machinery. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining[C]. 2016: 785-794.
[42] VANDERPLAS J. Python data science handbook[M]. Sevastopol: O'Reilly Media Inc, 2018: 1-500.
[43] WOLPERT D H. Stacked generalization [J]. Neural Networks, 1992, 5(2): 241-259. doi: 10.1016/S0893-6080(05)80023-1
[44] BREIMAN L. Stacked regressions [J]. Machine Learning, 1996, 24(1): 49-64.
[45] ZENKO B, DZEROSKI S. Stacking with an extended set of meta-level attributes and MLR[A]. In: Elomaa T, Mannila H, et al. 13th European Conference on Machine Learning[C]. Springer, Berlin, Heidelberg, 2002: 493-504.
[46] SHARMA A, RANI R. Drug sensitivity prediction framework using ensemble and multi-task learning [J]. International Journal of Machine Learning and Cybernetics, 2020, 11(3): 1-10.
[47] GRAMATICA P. Principles of QSAR models validation: internal and external [J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701.
[48] 覃礼堂, 刘树深, 肖乾芬, 等. QSAR模型内部和外部验证方法综述 [J]. 环境化学, 2013, 32(7): 1205-1211. doi: 10.7524/j.issn.0254-6108.2013.07.012 QIN L T, LIU S S, XIAO Q F, et al. Internal and external validations of QSAR model: Review [J]. Environmental Chemistry, 2013, 32(7): 1205-1211(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.012
[49] Python, Version 3.7. 0[CP]. https://www.python.org/downloads/release/python-370/.
[50] ROY K, DAS R N, AMBURE P, et al. Be aware of error measures. Further studies on validation of predictive QSAR models [J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 18-33. doi: 10.1016/j.chemolab.2016.01.008
[51] LARSEN R J, MARX M L. An introduction to mathematical statistics and its applications[M]. Upper Saddle River: Prentice-Hall Inc, 1981: 1-920.
[52] ROY K, AMBURE P, AHER R B. How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? [J]. Chemometrics & Intelligent Laboratory Systems, 2017, 162: 44-54.
[53] 闻洋. 有机污染物生物富集与鱼体内临界浓度关系的研究[D]. 长春: 东北师范大学, 2015: 1-126. WEN Y. Relationship between bioconcentration and critical body residues of organic pollutants[D]. Changchun: Northeast Normal University, 2015, 1-126(in Chinese).
[54] TICE C M. Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals? [J]. Pest Management Science: formerly Pesticide Science, 2001, 57(1): 3-16. doi: 10.1002/1526-4998(200101)57:1<3::AID-PS269>3.0.CO;2-6
[55] 李超. 有机污染物与·OH气相反应动力学和机制的计算模拟预测[D]. 大连: 大连理工大学, 2015: 1-211. LI C. Computational simulation to predict gaseous reaction kinetics and mechanism of organic pollutants with·OH[D]. Dalian: Dalian University of Technology, 2015: 1-211(in Chinese).
[56] WEN Y, HE J, LIU X, et al. Linear and non-linear relationships between bioconcentration and hydrophobicity: Theoretical consideration [J]. Environmental Toxicology and Pharmacology, 2012, 34(2): 200-208. doi: 10.1016/j.etap.2012.04.001
[57] MCHEDLOV-PETROSSYAN N O, VODOLAZKAYA N A, DOROSHENKO A O. Ionic equilibria of fluorophores in organized solutions: The influence of micellar microenvironment on protolytic and photophysical properties of rhodamine B [J]. Journal of Fluorescence, 2003, 13(3): 235-248. doi: 10.1023/A:1025089916356
[58] BRINKMANN M, ALHARBI H, FUCHYLO U, et al. Mechanisms of pH dependent uptake of ionizable organic chemicals by fish from oil sands process-affected water (OSPW) [J]. Environmental Science & Technology, 2020, 54(15): 9547-9555.
[59] 邰红巍, 闻洋, 苏丽敏, 等. 有机污染物在鱼体内临界浓度研究进展 [J]. 科学通报, 2015(19): 1789-1795. TAI H W, WEN Y, SU L M, et al. Critical body residue to fish of organic pollutants [J]. Chinese Science Bulletin, 2015(19): 1789-1795(in Chinese).
[60] 席越, 杨先海, 张红雨, 等. 基于形态修正的描述符构建可电离化合物对大型溞急性毒性的QSAR模型 [J]. 生态毒理学报, 2019, 14(4): 183-191. XI Y, YANG X H, ZHANG H Y, et al. Development of acute toxicity of daphnia magna QSAR models for ionogenic organic chemicals based on chemical from adjusted descriptors [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 183-191(in Chinese).
[61] LIN S Y, YANG X H, LIU H H. Development of liposome/water partition coefficients predictive models for neutral and ionogenic organic chemicals [J]. Ecotoxicology and Environmental Safety, 2019, 179: 40-49. doi: 10.1016/j.ecoenv.2019.04.036
[62] BOLTON J L, DUNLAP T L. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects [J]. Chemical Research in Toxicology, 2017, 30(1): 13-37. doi: 10.1021/acs.chemrestox.6b00256
[63] TERRENCE J M, DOUGLAS C J. The metabolism and toxicity of quinones, quinonimines, quinonemethides and quinone-thioethers [J]. Current Drug Metabolism, 2002, 3(4): 425-438. doi: 10.2174/1389200023337388
[64] CHRASTINA A, WELSH J, RONDEAU G, et al. Plumbagin-serum albumin interaction: spectral, electrochemical, structure-binding analysis, antiproliferative and cell signaling aspects with implications for anticancer therapy [J]. ChemMedChem, 2020, 14(15): 1338-1347.
[65] ZHAO C, BORIANI E, CHANA A, et al. A new hybrid system of QSAR models for predicting bioconcentration factors (BCF) [J]. Chemosphere, 2008, 73(11): 1701-1707. doi: 10.1016/j.chemosphere.2008.09.033
[66] GISSI A, NICOLOTTI O, CAROTTI A, et al. Integration of QSAR models for bioconcentration suitable for REACH [J]. Science of the Total Environment, 2013, 456: 325-332.
[67] ZHANG X M, SUN X F, JIANG R F, et al. Screening new persistent and bioaccumulative organics in China's inventory of industrial chemicals [J]. Environmental Science & Technology, 2020, 54: 7398-7408.
[68] GB/T24782-2009. 持久性、生物累积性和毒性物质及高持久性和高生物累积性物质的判定方法[S]. 北京: 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会, 2009. GB/T24782-2009. Determination methods for persistent, bioaccumulative and toxic substances and highly persistent and highly bioaccumulative substances[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China, 2009(in Chinese).