[1] KUMAR A, KHAN M, ZENG X, et al. Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light [J]. Chemical Engineering Journal, 2018, 353: 645-656. doi: 10.1016/j.cej.2018.07.153
[2] NARVÁEZ J A L, MAHECHA P V. Exploring the potential of using the residues of lulo (Solanum quitoense) for the production of biopolymers [J]. Acta Agronomica, 2012, 61(1): 93-94.
[3] KÜMMERER K. Antibiotics in the aquatic environment – A review – Part I [J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
[4] 张君, 封丽, 田隽, 等. 氟喹诺酮类在环境中的分布及去除研究进展 [J]. 环境科学与技术, 2019, 42(S1): 77-84. ZHANG J, FENG L, TIAN J, et al. Research progress on the distribution and removal of fluoroquinolones in the environment [J]. Environmental Science And Technology, 2019, 42(S1): 77-84(in Chinese).
[5] ČVANČAROVÁ M, MOEDER M, FILIPOVÁ A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi – Metabolites, enzymes and residual antibacterial activity [J]. Chemosphere, 2015, 136: 311-320. doi: 10.1016/j.chemosphere.2014.12.012
[6] GOLET E M, XIFRA I, SIEGRIST H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science and Technology, 2003, 37(15): 3243-3249. doi: 10.1021/es0264448
[7] WANG P, HE Y L, HUANG CH. Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation [J]. Water Research, 2010, 44(20): 5989-5998. doi: 10.1016/j.watres.2010.07.053
[8] XU W, ZHANG G, LI X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534. doi: 10.1016/j.watres.2007.06.023
[9] GÖBEL A, THOMSEN A, MCARDELL C S, et al. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge [J]. Journal of Chromatography A, 2005, 1085(2): 179-189. doi: 10.1016/j.chroma.2005.05.051
[10] MCARDELL C, MOLNAR E, SUTER M, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland [J]. Environmental Science & Technology, 2003, 37: 5479-86.
[11] GOLET E M, ALDER A C, GIGER W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the glatt valley watershed, Switzerland [J]. Environmental Science & Technology, 2002, 36(17): 3645-3651.
[12] HUBER M M, GÖBEL A, JOSS A, et al. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents:   A pilot study [J]. Environmental Science & Technology, 2005, 39(11): 4290-4299.
[13] SIRÉS I, BRILLAS E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review [J]. Environment International, 2012, 40(1): 212-229.
[14] SPELTINI A, STURINI M, MARASCHI F, et al. Fluoroquinolone antibiotics in environmental waters: Sample preparation and determination [J]. Journal of Separation Science, 2010, 33(8): 1115-1131.
[15] LILLENBERG M, YURCHENKO S, KIPPER K, et al. Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(32): 5949-5954. doi: 10.1016/j.chroma.2009.06.029
[16] LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process [J]. Environmental Science & Technology, 2010, 44(9): 3468-3473.
[17] JIA A, WAN Y, XIAO Y, et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant [J]. Water Research, 2012, 46(2): 387-394. doi: 10.1016/j.watres.2011.10.055
[18] SPELTINI A, STURINI M, MARASCHI F, et al. Analytical methods for the determination of fluoroquinolones in solid environmental matrices [J]. TrAC Trends in Analytical Chemistry, 2011, 30(8): 1337-1350. doi: 10.1016/j.trac.2011.04.011
[19] GU C, KARTHIKEYAN K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides [J]. Environmental Science & Technology, 2005, 39(23): 9166-9173.
[20] LI H, ZHANG D, HAN X, et al. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics [J]. Chemosphere, 2014, 95: 150-155. doi: 10.1016/j.chemosphere.2013.08.053
[21] HU L, MARTIN H M, STRATHMANN T J. Oxidation kinetics of antibiotics during water treatment with potassium permanganate [J]. Environmental Science & Technology, 2010, 44(16): 6416-6422.
[22] YANG Y, OK Y S, KIM K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review [J]. Science of the Total Environment, 2017, 596-597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102
[23] KIM H, HWANG Y S, SHARMA V K. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes [J]. Chemical Engineering Journal, 2014, 255: 23-27. doi: 10.1016/j.cej.2014.06.035
[24] ÖTKER H M, AKMEHMET B I. Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite [J]. Journal of Hazardous Materials, 2005, 122(3): 251-258. doi: 10.1016/j.jhazmat.2005.03.005
[25] VAN W E M, SEYMOUR M D, PETERSON J W. Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: Adsorption and breakdown [J]. Science of the Total Environment, 2012, 441: 1-9. doi: 10.1016/j.scitotenv.2012.09.067
[26] JIANG C, ZHANG X, XU X, et al. Magnetic mesoporous carbon material with strong ciprofloxacin adsorption removal property fabricated through the calcination of mixed valence Fe based metal-organic framework [J]. Journal of Porous Materials, 2016, 23(5): 1297-1304. doi: 10.1007/s10934-016-0188-x
[27] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J]. Water Research, 2013, 47(3): 957-995. doi: 10.1016/j.watres.2012.11.027
[28] KLAVARIOTI M, MANTZAVINOS D, KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J]. Environment International, 2009, 35(2): 402-417. doi: 10.1016/j.envint.2008.07.009
[29] MALATO S, MALDONADO M I, BLANCO J, et al. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends [J]. Catalysis Today, 2009, 147(1): 1-59. doi: 10.1016/j.cattod.2009.06.018
[30] FENG M, WANG Z Y, DIONYSIOU D D, et al. Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment [J]. Journal of Hazardous Materials, 2018, 344: 1136-1154. doi: 10.1016/j.jhazmat.2017.08.067
[31] LITTER M I. Introduction to photochemical advanced oxidation processes for water treatment [J]. Environmental Photochemistry Part II, 2005, 2: 325-366.
[32] ANDREOZZI R, CAPRIO V, INSOLA A, et al. Advanced oxidation processes (AOP) for water purification and recovery [J]. Catalysis Today, 1999, 53(1): 51-59. doi: 10.1016/S0920-5861(99)00102-9
[33] DUESTERBERG C K, WAITE T D. Process optimization of Fenton oxidation using kinetic modeling [J]. Environmental Science & Technology, 2006, 40(13): 4189-4195.
[34] CHENG M, ZENG G M, HUANG D L, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review [J]. Chemical Engineering Journal, 2016, 284: 582-598. doi: 10.1016/j.cej.2015.09.001
[35] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
[36] SHARMA A, AHMAD J, FLORA S J S. Application of advanced oxidation processes and toxicity assessment of transformation products [J]. Environmental Research, 2018, 167: 223-233. doi: 10.1016/j.envres.2018.07.010
[37] ADAMS C, WANG Y, LOFTIN K, et al. Removal of antibiotics from sur face and distilled water in conventional water treatment processes [J]. Journal of Environmental Engineering, 2002, 128(3): 253-260. doi: 10.1061/(ASCE)0733-9372(2002)128:3(253)
[38] ARSLAN A I, DOGRUEL S. Pre-treatment of penicillin formulation effluent by advanced oxidation processes [J]. Journal of Hazardous Materials, 2004, 112(1): 105-113.
[39] ELMOLLA E S, CHAUDHURI M. The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment [J]. Desalination, 2011, 272(1): 218-224.
[40] AN T, YANG H, LI G, et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water [J]. Applied Catalysis B: Environmental, 2010, 94(3): 288-294.
[41] AN T, YANG H, SONG W, et al. Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis [J]. Journal of Physical Chemistry A, 2010, 114(7): 2569-2575. doi: 10.1021/jp911349y
[42] PAUL T, MILLER P L, STRATHMANN T J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents [J]. Environmental Science & Technology, 2007, 41(13): 4720-4727.
[43] DEWITTE B, DEWULF J, DEMEESTERE K, et al. Ozonation of ciprofloxaci n in water: HRMS identification of reaction products and pathways [J]. Environmental Science & Technology, 2008, 42(13): 4889-4895.
[44] LIU C, NANABOINA V, KORSHIN G V, et al. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater [J]. Water Research, 2012, 46(16): 5235-5246. doi: 10.1016/j.watres.2012.07.005
[45] CARBAJO J B, PETRE A L, ROSAL R., et al Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity [J]. Journal of Hazardous Materials, 2015, 292: 34-43. doi: 10.1016/j.jhazmat.2015.02.075
[46] XU Y, LIU S, GUO F, et al. Evaluation of the oxidation of enrofloxacin by permanganate and the antimicrobial activity of the products [J]. Chemosphere, 2016, 144: 113-121. doi: 10.1016/j.chemosphere.2015.07.083
[47] KULKARNI R M, HANAGADAKAR M S, MALLADI R S, et al. Experimental and theoretical studies on the oxidation of lomefloxacin by alkaline permanganate [J]. Desalination and Water Treatment, 2016, 57(23): 10826-10838. doi: 10.1080/19443994.2015.1037797
[48] JIANG J Q, ZHOU Z, PAHL O. Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(Ⅵ) [J]. Separation and Purification Technology, 2012, 88: 95-98. doi: 10.1016/j.seppur.2011.12.021
[49] ZHOU Z, JIANG J Q. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI) [J]. Chemosphere, 2015, 119: S95-S100. doi: 10.1016/j.chemosphere.2014.04.006
[50] BARIŞÇI S, ULU F, SILLANPÄÄ M. et al The usage of different forms of ferrate (Ⅵ) ion for amoxicillin and ciprofloxacin removal: density functional theory based modelling of redox decomposition [J]. Journal of Chemical Technology & Biotechnology, 2016, 91(1): 257-266.
[51] MICHAEL I, HAPESHI E, MICHAEL C, et al. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci [J]. Water Research, 2012, 46(17): 5621-5634. doi: 10.1016/j.watres.2012.07.049
[52] ÖZCAN A, ATILIR ÖZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment [J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105
[53] WANG N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016
[54] CHEN L, MA J, LI X C, et al. Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles [J]. Environmental Science & Technology, 2011, 45(9): 3925-3930.
[55] FENTON H J H, LXXIII. Oxidation of tartaric acid in presence of iron [J]. Journal of the Chemical Society, Transactions, 1894, 65(0): 899-910. doi: 10.1039/CT8946500899
[56] TEKIN H, BILKAY O, ATABERK S, et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater [J]. Journal of Hazardous Materials, 2006, 136: 258-65. doi: 10.1016/j.jhazmat.2005.12.012
[57] 何东芹, Fenton类高级氧化反应在污泥脱水和污染物降解中的作用机制[D]. 合肥: 中国科学技术大学, 2017. HE D Q. The mechanism of Fenton-like advanced oxidation reactions in sludge dewatering and pollutant degradation [D]. Hefei: University of Science and Technology of China, 2017.
[58] DUESTERBERG C K, MYLON S E, WAITE T D. pH effects on iron-catalyzed oxidation using Fenton’s reagent [J]. Environmental Science & Technology, 2008, 42(22): 8522-8527.
[59] BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment [J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 557-572. doi: 10.1016/j.jece.2013.10.011
[60] ONG W, CHENG M, MA J, et al. Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay [J]. Environmental Science & Technology, 2006, 40(15): 4782-4787.
[61] NIE Y, HU C, QU J, et al. Efficient photodegradation of Acid Red B by immobilized ferrocene in the presence of UVA and H2O2 [J]. Journal of Hazardous Materials, 2008, 154(1): 146-152.
[62] WANG J, WANG S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review [J]. Journal of Environmental Management, 2016, 182: 620-640. doi: 10.1016/j.jenvman.2016.07.049
[63] MACHULEK A, MORAES J E F. VAUTIER-GIONGO C., et al Abatement of the inhibitory effect of chloride anions on the photo-Fenton process [J]. Environmental Science & Technology, 2007, 41(24): 8459-8463.
[64] AVETTA P, PENSATO A, MINELLA M, et al. Activation of persulfate by irradiated magnetite: Implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions [J]. Environmental Science & Technology, 2015, 49(2): 1043-1050.
[65] CLARIZIA L, RUSSO D, DI SOMMA I, et al. Homogeneous photo-Fenton processes at near neutral pH: A review [J]. Applied Catalysis B: Environmental, 2017, 209: 358-371. doi: 10.1016/j.apcatb.2017.03.011
[66] MAEZONO T, TOKUMURA M, SEKINE M, et al. Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II [J]. Chemosphere, 2011, 82(10): 1422-1430. doi: 10.1016/j.chemosphere.2010.11.052
[67] IGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry [J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564
[68] RAHIM P S, ABDUL A A R, WAN D W M A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 53-69. doi: 10.1016/j.jiec.2014.05.005
[69] LIU R, XU Y, CHEN B. Self-assembled nano-FeO(OH)/reduced graphene oxide aerogel as a reusable catalyst for photo-Fenton degradation of phenolic organics [J]. Environmental Science & Technology, 2018, 52(12): 7043-7053.
[70] BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry [J]. Chemical Reviews, 2009, 109(12): 6570-6631. doi: 10.1021/cr900136g
[71] JO W K, TAYADE R J. New generation energy-efficient light source for photocatalysis: LEDs for environmental applications [J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2073-2084.
[72] LIU J, WU J Y, KANG C L, et al. Photo-Fenton effect of 4-chlorophenol in ice [J]. Journal of Hazardous Materials, 2013, 261: 500-511. doi: 10.1016/j.jhazmat.2013.07.040
[73] PLIEGO G, XEKOUKOULOTAKIS N, VENIERI D, et al. Complete degradation of the persistent anti-depressant sertraline in aqueous solution by solar photo-Fenton oxidation [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(6): 814-818.
[74] PLIEGO G, ZAZO J A, GARCIA M P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview [J]. Critical Reviews in Environmental Science and Technology, 2015, 45(24): 2611-2692. doi: 10.1080/10643389.2015.1025646
[75] BARHOUMI N, LABIADH L, OTURAN M A, et al. Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process [J]. Chemosphere, 2015, 141: 250-257. doi: 10.1016/j.chemosphere.2015.08.003
[76] YAHYA M S, OTURAN N, EL K K, et al. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products [J]. Chemosphere, 2014, 117: 447-454. doi: 10.1016/j.chemosphere.2014.08.016
[77] GIRI A S, GOLDER A K. Ciprofloxacin degradation from aqueous solution by Fenton oxidation: Reaction kinetics and degradation mechanisms [J]. RSC Advances, 2014, 4(13): 6738-6745. doi: 10.1039/c3ra45709e
[78] XIAO X, ZENG X, LEMLEY A T. Species-dependent degradation of ciprofloxacin in a membrane anodic Fenton system [J]. Journal of Agricultural and Food Chemistry, 2010, 58(18): 10169-10175. doi: 10.1021/jf101943c
[79] GONG Y, LI J, ZHANG Y, et al. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode [J]. Journal of Hazardous Materials, 2016, 304: 320-328. doi: 10.1016/j.jhazmat.2015.10.064
[80] YAHYA M S, EL KARBANE M, OTURAN N, et al. Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediate products analysis [J]. Environmental Technology, 2016, 37(10): 1276-1287. doi: 10.1080/09593330.2015.1111427
[81] ANNABI C, FOURCADE F, SOUTREL I, et al. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism [J]. Journal of Environmental Management, 2016, 165: 96-105. doi: 10.1016/j.jenvman.2015.09.018
[82] GARCIA S S, GARRIDO J A, RODRÍGUEZ R M, et al. Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes [J]. Water Research, 2012, 46(7): 2067-2076. doi: 10.1016/j.watres.2012.01.019
[83] SANTOS L V D S, MEIRELES A M, LANGE L C. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2 [J]. Journal of Environmental Management, 2015, 154: 8-12.
[84] PI Y, FENG J, SONG M, et al. Degradation potential of ofloxacin and its resulting transformation products during Fenton oxidation process [J]. Chinese Science Bulletin, 2014, 59(21): 2618-2624. doi: 10.1007/s11434-014-0293-7
[85] GUPTA A, GARG A. Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment [J]. Chemosphere, 2018, 193: 1181-1188. doi: 10.1016/j.chemosphere.2017.11.046
[86] BOBU M, YEDILER A, SIMINICEANU I, et al. Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions [J]. Journal of Environmental Science and Health, Part A, 2013, 48(3): 251-262. doi: 10.1080/10934529.2013.726805
[87] SUN S P, GUO H Q, KE Q, et al. Degradation of antibiotic ciprofloxacin hydrochloride by photo-Fenton oxidation process [J]. Environmental Engineering Science, 2009, 26(4): 753-759. doi: 10.1089/ees.2008.0076
[88] 吴健, 熊振湖. UV/Fenton法对诺氟沙星的降解与矿化 [J]. 天津城市建设学院学报, 2008, 14(4): 259-262. WU J, XIONG Z H. Degradation and mineralization of norfloxacin by UV/Fenton method [J]. Journal of Tianjin Institute of Urban Construction, 2008, 14(4): 259-262(in Chinese).
[89] WANG C, YU G, CHEN H, et al. Degradation of norfloxacin by hydroxylamine enhanced fenton system: Kinetics, mechanism and degradation pathway [J]. Chemosphere, 2021, 270: 129408. doi: 10.1016/j.chemosphere.2020.129408
[90] GIRI A S, GOLDER A K. Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: Degradation mechanisms and iron chelation [J]. Journal of Environmental Sciences, 2019, 80: 82-92. doi: 10.1016/j.jes.2018.09.016
[91] NOGUEIRA A A, SOUZA B M, DEZOTTI M W C, et al. Ferrioxalate complexes as strategy to drive a photo-Fenton reaction at mild pH conditions: A case study on levofloxacin oxidation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345: 109-123. doi: 10.1016/j.jphotochem.2017.05.020
[92] PERINI J A L, TONETTI A L, VIDAL C, et al. Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation [J]. Applied Catalysis B: Environmental, 2018, 224: 761-771. doi: 10.1016/j.apcatb.2017.11.021
[93] SEIBERT D, DIEL T, WELTER J B, et al. Performance of photo-Fenton process mediated by Fe (III)-carboxylate complexes applied to degradation of landfill leachate [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4462-4470. doi: 10.1016/j.jece.2017.08.043
[94] MIRALLES CUEVAS S, AUDINO F, OLLER I, et al. Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation) [J]. Separation and Purification Technology, 2014, 122: 515-522. doi: 10.1016/j.seppur.2013.12.006
[95] LIU X, ZHOU Y, ZHANG J, et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps [J]. Chemical Engineering Journal, 2018, 347: 379-397. doi: 10.1016/j.cej.2018.04.142
[96] SHARMILA V G, KUMAR S A, BANU J R, et al. Feasibility analysis of homogenizer coupled solar photo Fenton process for waste activated sludge reduction [J]. Journal of Environmental Management, 2019, 238: 251-256.
[97] HUANG A, ZHI D, TANG H, et al. Effect of Fe2+, Mn2+ catalysts on the performance of electro-Fenton degradation of antibiotic ciprofloxacin, and expanding the utilizing of acid mine drainage [J]. Science of the Total Environment, 2020, 720: 137560. doi: 10.1016/j.scitotenv.2020.137560
[98] CHEN Y, WANG A, ZHANG Y, et al. Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe3+-CIP chelate and its effect on catalytic behavior of Fe2+/Fe3+ and CIP mineralization [J]. Electrochimica Acta, 2017, 256: 185-195. doi: 10.1016/j.electacta.2017.09.173
[99] SUN J H, SUN S P, FAN M H, et al. Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process [J]. Journal of Hazardous Materials, 2008, 153(1): 187-193.
[100] FAUST B, HOIGNÉ J. Photolysis of Fe(Ⅲ)-hydroxy complexes as sources of OH radicals in clouds, fog and rain [J]. Atmospheric Environment. Part A. General Topics, 1990, 24: 79-89. doi: 10.1016/0960-1686(90)90443-Q
[101] KIM Y K, HUH I R. Enhancing biological treatability of landfill leachate by chemical oxidation [J]. Environmental Engineering Science, 1997, 14: 73-79. doi: 10.1089/ees.1997.14.73
[102] KIM S M, VOGELPOHL A. Degradation of organic pollutants by the photo-Fenton-process [J]. Chemical Engineering & Technology, 1998, 21(2): 187-191.
[103] KAVITHA V, PALANIVELU K. Destruction of cresols by Fenton oxidation process [J]. Water Research, 2005, 39(13): 3062-3072. doi: 10.1016/j.watres.2005.05.011
[104] HASSAN A K, RAHMAN M M, CHATTOPADHAY G, et al. Kinetic of the degradation of sulfanilic acid azochromotrop (SPADNS) by Fenton process coupled with ultrasonic irradiation or L-cysteine acceleration [J]. Environmental Technology & Innovation, 2019, 15: 100380.
[105] PIGNATELLO J J. Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide [J]. Environmental Science & Technology, 1992, 26(5): 944-951.
[106] FAN X, HAO H, WANG Y, et al. Fenton-like degradation of nalidixic acid with Fe3+/H2O2 [J]. Environmental Science and Pollution Research, 2013, 20(6): 3649-3656. doi: 10.1007/s11356-012-1279-0
[107] GUEDES A M F M, MADEIRA L M P, BOAVENTURA R A R, et al. Fenton oxidation of cork cooking wastewater—overall kinetic analysis [J]. Water Research, 2003, 37(13): 3061-3069. doi: 10.1016/S0043-1354(03)00178-7
[108] AMIMI M, QOURZAL S, BARKA N, et al. Methomyl degradation in aqueous solutions by Fenton's reagent and the photo-Fenton system [J]. Separation and Purification Technology, 2008, 61(1): 103-108. doi: 10.1016/j.seppur.2007.09.017
[109] BOSSMANN S, OLIVEROS E, GÖB S, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions [J]. Journal of Physical Chemistry A, 1998, 102: 5542-5550.
[110] WANG Q, TIAN S, NING. Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene [J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 643-649.
[111] GOGATE P R, PANDIT A B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions [J]. Advances in Environmental Research, 2004, 8(3): 501-551.
[112] PANIZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes [J]. Water Research, 2009, 43(2): 339-344. doi: 10.1016/j.watres.2008.10.028
[113] KIM J S, KIM H Y, WON C H, et al. Treatment of leachate produced in stabilized landfills by coagulation and Fenton oxidation process [J]. Journal of the Chinese Institute of Chemical Engineers, 2001, 32: 425-429.
[114] LAU I W C, WANG P, FANG H H. Organic removal of anaerobically treated leachate by Fenton coagulation [J]. Journal of Environmental Engineering, 2001, 127(7): 666-669. doi: 10.1061/(ASCE)0733-9372(2001)127:7(666)
[115] GUO W, LI T, CHEN Q, et al. The roles of wavelength in the gaseous toluene removal with •OH from UV activated Fenton reagent [J]. Chemosphere, 2021: 129998.
[116] HERNEY RAMIREZ J, VICENTE M A, MADEIRA L M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review [J]. Applied Catalysis B: Environmental, 2010, 98(1): 10-26.
[117] FENG J, HU X, YUE P L, et al. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction [J]. Water Research, 2003, 37(15): 3776-3784. doi: 10.1016/S0043-1354(03)00268-9
[118] ZHANG X, LI R, JIA M, et al. Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: A direct hole oxidation pathway [J]. Chemical Engineering Journal, 2015, 274: 290-297. doi: 10.1016/j.cej.2015.03.077
[119] BABIĆ S, PERIŠA M, ŠKORIĆ I. Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media [J]. Chemosphere, 2013, 91(11): 1635-1642. doi: 10.1016/j.chemosphere.2012.12.072
[120] GUINEA E, BRILLAS E, CENTELLAS F, et al. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison [J]. Water Research, 2009, 43(8): 2131-2138. doi: 10.1016/j.watres.2009.02.025
[121] RODRIGUES S C, MANIERO M G, RATH S, et al. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity [J]. Science of the Total Environment, 2013, 445-446: 337-346. doi: 10.1016/j.scitotenv.2012.12.079
[122] GUO H, LI Z, LIN S, et al. Multi-catalysis induced by pulsed discharge plasma coupled with graphene-Fe3O4 nanocomposites for efficient removal of ofloxacin in water: Mechanism, degradation pathway and potential toxicity [J]. Chemosphere, 2021, 265: 129089. doi: 10.1016/j.chemosphere.2020.129089
[123] GOU Y, CHEN P, YANG L, et al. Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: A review [J]. Chemosphere, 2021, 270: 129481. doi: 10.1016/j.chemosphere.2020.129481
[124] LUO X, WEI X, CHEN J, et al. Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies [J]. Water Research, 2019, 166: 115083. doi: 10.1016/j.watres.2019.115083
[125] MICHAEL I, HAPESHI E, MICHAEL C, et al. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: Evaluation of operational and kinetic parameters [J]. Water Research, 2010, 44(18): 5450-5462. doi: 10.1016/j.watres.2010.06.053
[126] MICHAEL I, HAPESHI E, ACEÑA J, et al. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: Mineralization and characterization of major intermediate products [J]. Science of the Total Environment, 2013, 461-462: 39-48. doi: 10.1016/j.scitotenv.2013.04.054