[1] HENDERSON G M. Caving in to new chronologies [J]. Science, 2006, 313(5787): 620-622. doi: 10.1126/science.1128980
[2] ROBERTS M S, SMART P L, BAKER A. Annual trace element variations in a Holocene speleothem [J]. Earth and Planetary Science Letters, 1998, 154(1-4): 237-246. doi: 10.1016/S0012-821X(97)00116-7
[3] JOHNSON K R, HU C, BELSHAW N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction [J]. Earth & Planetary Letters, 2006, 244(1/2): 394-407.
[4] CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591
[5] FAIRCHILD I J, BORSATO A, TOOTH A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications or speleothem climatic records [J]. Chemical Geology, 2000, 166(3/4): 255-269.
[6] WONG C I, BANNER J L, MUSGROVE M L. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records [J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3514-3529. doi: 10.1016/j.gca.2011.03.025
[7] OSTER J L, MONTAÑEZ I P, KELLEY N P. Response of a modern cave system to large seasonal precipitation variability [J]. Geochimica et Cosmochimica Acta, 2012, 91: 92-108. doi: 10.1016/j.gca.2012.05.027
[8] MCDERMOTT F, FRISIA S, HUANG Y, et al. Holocene climate variability in Europe: Evidence from δ18O, textural and extension-rate variations in three speleothems [J]. Quaternary Science Reviews, 1999, 18(8/9): 1021-1038.
[9] FAIRCHILD I J, SMITH C L, BAKER A, et al. Modification and preservation of environmental signals in speleothems [J]. Earth-Science Reviews, 2006, 75(1-4): 105-153. doi: 10.1016/j.earscirev.2005.08.003
[10] TOOTH A F, FAIRCHILD I J. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland [J]. Journal of Hydrology, 2011, 273(1/4): 51-68.
[11] SMITH C L, FAIRCHILD I J, SPÖTL C, et al. Chronology building using objective identification of annual signals in trace element profiles of stalagmites [J]. Quaternary Geochronology, 2009, 4(1): 11-21. doi: 10.1016/j.quageo.2008.06.005
[12] CASTEEL R C, BANNER J L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies [J]. Chemical Geology, 2015, 392(21): 43-58.
[13] FAIRCHILD I J, BAKER A, BORSATO A, et al. Annual to sub-annual resolution of multiple trace-element trends in speleothems [J]. Journal of the Geological Society, 2001, 158(5): 831-841. doi: 10.1144/jgs.158.5.831
[14] TREBLE P, SHELLEY J M G, CHAPELL J. Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia [J]. Earth and Planetary Science Letters, 2003, 216(1/2): 141-153.
[15] TREMAINE D M, FROELICH P N. Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite [J]. Geochimica et Cosmochimica Acta, 2013, 121(15): 522-545.
[16] RAU G C, CUTHBERT M O, ANDERSEN M S, et al. Controls on cave drip water temperature and implications for speleothem-based paleoclimate reconstructions [J]. Quaternary Science Reviews, 2015, 127(1): 19-36.
[17] BAKER A, GENTY D, FAIRCHILD I J. Hydrological characterisation of stalagmite dripwaters at Grotte de Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter [J]. Hydrology and Earth System Sciences, 2000, 4(3): 439-449. doi: 10.5194/hess-4-439-2000
[18] FAIMON J, BODLÁKOVÁ R, PRACNY P, et al. Transfer of climatic variables by dripwater: A case study from Kateřinská Cave (Moravian Karst) [J]. Environmental Earth Sciences, 2016, 75(16): 1151. doi: 10.1007/s12665-016-5982-x
[19] PRASANNA M V, NAGARAJAN R, CHIDAMBARAM S, et al. Drip water geochemistry of Niah Great Cave, NW Borneo, Malaysia: a base line study [J]. Carbonates and Evaporites, 2013, 29(1): 41-54.
[20] TADROS C V, TREBLE P C, BAKER A, et al. Cave drip water solutes in south-eastern Australia: Constraining sources, sinks and processes [J]. Science of the Total Environment, 2019, 651(2): 2175-2186.
[21] HUANG Y M, FAIRCHILD I J, BORSATO A, et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy) [J]. Chemical Geology, 2001, 175(3-4): 429-448. doi: 10.1016/S0009-2541(00)00337-5
[22] 黄嘉仪, 陈琳, 陈琼, 等. 广东英德宝晶宫洞穴滴水元素季节变化与影响因素 [J]. 环境科学, 2016, 37(5): 1798-1804. HUANG J Y, CHEN L, CHEN Q, et al. Seasonal variations and controlling factors of the element contents in drip waters collected from the Baojinggong Cave in Guangdong Province [J]. Environmental Science, 2016, 37(5): 1798-1804(in Chinese).
[23] YUAN D X, CHENG H, EDWARDS R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220
[24] ZENG G N, LUO W J, WANG S J, et al. Hydrogeochemical and climatic interpretations of isotopic signals from precipitation to drip waters in Liangfeng Cave, Guizhou Province, China [J]. Environmental Earth Sciences, 2015, 74: 1509-1519. doi: 10.1007/s12665-015-4143-y
[25] ATKINSON T C. Diffuse flow and conduit flow in limestone terrain in Mendip Hills, Somerset (Great Britain) [J]. Journal of Hydrology, 1977, 35(1/2): 93-110.
[26] FORD D C, WILLIAMS P W. Karst Geomorphology and Hydrology[M]. London: Unwin Hyman, 2007.
[27] MCDONALD J, DRYSDALE R, HILL D, et al. The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia [J]. Chemical Geology, 2007, 244(3-4): 605-623. doi: 10.1016/j.chemgeo.2007.07.007
[28] 程珂, 王庆, 郑志惠, 等. 山东开元洞滴水微量元素季节变化特征及影响因素 [J]. 海洋地质与第四纪地质, 2019, 39(1): 154-162. CHENG K, WANG Q, ZHENG Z H, et al. Seasonal varitions in trace elements and influencing factors in drip water from Kaiyuan Cave, Shangdong Province [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 154-162(in Chinese).
[29] 姜伟, 周川, 纪道斌等. 三峡库区澎溪河与磨刀溪电导率等水质特征与水华的关系比较 [J]. 环境科学, 2017, 38(6): 138-147. JIANG W, ZHOU C, JI D B. Comparison of relationship between conduction and algal bloom in Pengxi River and Modao River in Three Gorges Reservoir [J]. Environmental Science, 2017, 38(6): 138-147(in Chinese).
[30] 贺海波, 周厚云, 刘淑华, 等. 川东北楼房洞洞穴系统水体元素含量季节变化与影响因素 [J]. 地球化学, 2015, 44(2): 205-212. HE H B, ZHOU H Y, LIU Y S, et al. Element contents in water collected from the Loufang Cave system in NE Sichuan, Central China: Seasonal variations and controlling factors [J]. Geochimica, 2015, 44(2): 205-212(in Chinese).
[31] BUECHER R H. Mieroclimate study of Kartchner caverns, Arizona [J]. Journal of Cave and Karst Studies, 1999, 61(2): 108-120.
[32] 张会领, 姜光辉, 林玉石, 等. 洞穴石笋形成过程中的溶蚀作用研究 [J]. 地质论评, 2012, 58(6): 1091-1100. doi: 10.3969/j.issn.0371-5736.2012.06.009 ZHANG H L, JIANG G H, LIN Y S, et al. Research on dissolution in the process of stalagmite forming [J]. Geological Review, 2012, 58(6): 1091-1100(in Chinese). doi: 10.3969/j.issn.0371-5736.2012.06.009
[33] BANNER J L, GUILFOYLE A, JAMES E W, et al. Seasonal variations in modern speleothem calcite growth in central Texas, USA [J]. Journal of Sedimentary Research, 2007, 77(8): 615-622. doi: 10.2110/jsr.2007.065
[34] 李吉龙. 安徽蓬莱仙洞洞穴滴水水文地球化学指标变化及其意义[D]. 南京: 南京师范大学, 2014. LI J L. Research on hydrogeochemistry characteristics and environmental implications of cave drip-water in Penglaixian Cave, Anhui Province[D]. Nanjing: Nanjing Normal University, 2014 (in Chinese).
[35] 班凤梅, 潘根兴, 蔡炳贵, 等. 北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义 [J]. 中国岩溶, 2009, 28(3): 243-248. doi: 10.3969/j.issn.1001-4810.2009.03.003 BAN F M, PAN G X, CAI B G et al. Temporal-spatial variation of SO42- concentration of the drip water and its significance in the Shihua Cave, Beijing [J]. Carsologica Sinica, 2009, 28(3): 243-248(in Chinese). doi: 10.3969/j.issn.1001-4810.2009.03.003
[36] 王新中, 班凤梅, 潘根兴. 洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例 [J]. 第四纪研究, 2005, 25(2): 258-264. doi: 10.3321/j.issn:1001-7410.2005.02.018 WANG X Z, BAN F M, PAN G X. Temporal and spatial variation of cave drip water geochem in Shihua Cave, Beijing, China [J]. Quaternary Sciences, 2005, 25(2): 258-264(in Chinese). doi: 10.3321/j.issn:1001-7410.2005.02.018
[37] TATÁR E, MIHUCZ V G, ZÁMBÓ L, et al. Seasonal changes of fulvic acid, Ca and Mg concentrations of water samples collected above and in the Béke Cave of the Aggtelek karst system (Hungary) [J]. Applied Geochemistry, 2004, 19(11): 1727-1733. doi: 10.1016/j.apgeochem.2004.03.011
[38] 张结, 周忠发, 潘艳喜, 等. 织金洞土壤渗透水—洞穴滴水元素的时空变化特征 [J]. 水土保持研究, 2017, 24(4): 355-361. ZHANG J, ZHOU Z F, PAN Y X, et al. Spatiotemporal variation characteristic and environmental significance of soil water infiltration and element in water drip in Zhijin Cave. [J]. Research of Soil and Water Conservation, 2017, 24(4): 355-361(in Chinese).
[39] MCBRIDE M B. Environmental Chemistry of Soils[M]. Oxford: Oxford University Press, 1994.
[40] HEllSTROM J C, MCCULLOCH M T. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem [J]. Earth and Planetary Science Letters, 2000, 179(2): 0-297.
[41] 李渊, 刘子琦, 吕小溪, 等. 贵州毕节石漠化地区洞穴上覆土壤与基岩对滴水元素特征的影响 [J]. 环境化学, 2016, 35(9): 1894-19021. doi: 10.7524/j.issn.0254-6108.2016.09.2016033004 LI Y, LIU Z Q, LYU X X, et al. Effect of cave overlying soil and bedrock on drip water elements in rocky desertification area in Bijie, Guizhou [J]. Environmental Chemistry, 2016, 35(9): 1894-19021(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016033004
[42] BORSATO A, JOHNSTON V E, FRISIA S, et al. Temperature and altitudinal influence on karst dripwater chemistry: Implications for regional-scale palaeoclimate reconstruction [J]. Geochimica et Cosmochimica Acta, 2016, 177(15): 275-297.
[43] ATKINSON T C. Growth mechanisms of speleothems in Castleguard Cave [J]. Arctic and Alpine Research, 1983, 15(4): 523-536. doi: 10.2307/1551238
[44] RUSHDI A I, EESEK V, MIX A C, et al. Controls on dripwater chemistry of Oregon Caves National Monument, northwestern United States [J]. Journal of Hydrology, 2018, 557: 30-40. doi: 10.1016/j.jhydrol.2017.12.006
[45] 周福莉, 李廷勇, 陈虹利, 等. 重庆芙蓉洞洞穴水水文地球化学指标的时空变化 [J]. 水土保持学报, 2012, 26(3): 253-259. ZHOU F L, LI T Y, CHEN H L, et al. Spacial and temporal vatiation of hydrogeochemical indicade of the cave water in Furong cave, Chongqing [J]. Journal of Soil and Water Conservation, 2012, 26(3): 253-259(in Chinese).
[46] DAY C C. HENDERSOM G M. Controls on trace-element partitioning in cave-analogue calcite [J]. Geochimica et Cosmochimica Acta, 2013, 120(1): 612-627.
[47] KU T L, LI H C. Speleothems as high-resolution paleoenvironment archives: Records from northeastern China [J]. Journal of Earth System Science, 1998, 107(4): 321-327.