[1] |
潘永刚, 周汉城, 唐艳菊. 两网融合:生活垃圾减量化和资源化的模式与路径[J]. 再生资源与循环经济, 2016, 9(12): 13-20. doi: 10.3969/j.issn.1674-0912.2016.12.005
|
[2] |
丁晓翔, 姜忠磊, 汪洋, 等. 国内主要餐厨垃圾处理技术模式探讨分析[J]. 科技创新与应用, 2020(1): 6-11.
|
[3] |
邓俊. 餐厨垃圾无害化处理与资源化利用现状及发展趋势[J]. 环境工程技术学报, 2019, 9(6): 637-642.
|
[4] |
YU Q, LI H, DENG Z, et al. Comparative assessment on two full-scale food waste treatment plants with different anaerobic digestion processes[J]. Journal of Cleaner Production, 2020, 263: 121625. doi: 10.1016/j.jclepro.2020.121625
|
[5] |
YU Q, LI H. Life cycle environmental performance of two restaurant food waste management strategies at Shenzhen, China[J]. Journal of Material Cycles and Waste Management, 2021, 23: 826-839. doi: 10.1007/s10163-020-01157-5
|
[6] |
YU Q, LI H. Moderate separation of household kitchen waste towards global optimization of municipal solid waste management[J]. Journal of Cleaner Production, 2020, 277: 123330. doi: 10.1016/j.jclepro.2020.123330
|
[7] |
GUO H, ZHAO Y, DAMGAARD A, et al. Material flow analysis of alternative biorefinery systems for managing Chinese food waste[J]. Resources, Conservation and Recycling, 2019, 149: 197-209. doi: 10.1016/j.resconrec.2019.05.010
|
[8] |
EDWARDS J, OTHMAN M, CROSSIN E, et al. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems[J]. Bioresource Technology, 2018, 248(Pt A): 156-173.
|
[9] |
GUVEN H, WANG Z, ERIKSSON O. Evaluation of future food waste management alternatives in Istanbul from the life cycle assessment perspective[J]. Journal of Cleaner Production, 2019, 239: 117999. doi: 10.1016/j.jclepro.2019.117999
|
[10] |
POORE J, NEMECEK T. Reducing food's environmental impacts through producers and consumers[J]. Science, 2018, 360(6392): 987-992. doi: 10.1126/science.aaq0216
|
[11] |
TIM S, RICHARD W, CRAIG H, et al. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050[R]. World Resources Institute, 2019.
|
[12] |
郝晓地, 周鹏, 曹达啓. 餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报, 2017, 11(2): 673-682.
|
[13] |
郑苇, 靳俊平, 刘淑玲, 等. 基于中国餐厨垃圾性质的适宜资源化方法探讨[J]. 环境卫生工程, 2015, 23(6): 1-4. doi: 10.3969/j.issn.1005-8206.2015.06.001
|
[14] |
周俊, 王梦瑶, 王改红, 等. 餐厨垃圾资源化利用技术研究现状及展望[J]. 生物资源, 2020, 42(1): 87-96.
|
[15] |
DOU Z, TOTH J D, WESTENDORF M L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications[J]. Global Food Security, 2018, 17: 154-161. doi: 10.1016/j.gfs.2017.12.003
|
[16] |
SU H, ZHOU X, ZHENG R, et al. Hydrothermal carbonization of food waste after oil extraction pre-treatment: Study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium[J]. Science of the Total Environment, 2021, 754: 142192. doi: 10.1016/j.scitotenv.2020.142192
|
[17] |
ZHENG C, MA X, YAO Z, et al. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste[J]. Bioresource Technology, 2019, 285: 121347. doi: 10.1016/j.biortech.2019.121347
|
[18] |
ZHAI Y, WANG T, ZHU Y, et al. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder[J]. Waste Management, 2018, 77: 185-194. doi: 10.1016/j.wasman.2018.05.022
|
[19] |
LI Y, JIN Y, LI J, et al. Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion[J]. Energy, 2017, 118: 377-386. doi: 10.1016/j.energy.2016.12.041
|
[20] |
DING L, CHENG J, QIAO D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology, 2017, 241: 491-499. doi: 10.1016/j.biortech.2017.05.114
|
[21] |
MENG Y, LI S, YUAN H, et al. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste[J]. Bioresource Technology, 2015, 179: 452-459. doi: 10.1016/j.biortech.2014.12.015
|
[22] |
班福忱, 韩雪, 姜亚玲. 生活垃圾焚烧厂垃圾渗滤液处理工程实例[J]. 水处理技术, 2015, 41(9): 133-136.
|
[23] |
张国宇, 何明成, 王艳芳, 等. 城市生活垃圾焚烧厂垃圾渗滤液处理零排放实践[J]. 中国给水排水, 2015, 31(12): 102-105.
|
[24] |
FENG K, LI H, DENG Z, et al. Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste[J]. Renewable Energy, 2020, 146: 1588-1595. doi: 10.1016/j.renene.2019.07.127
|
[25] |
任连海, 黄燕冰, 王攀. 含盐量对餐厨垃圾堆肥理化特性变化规律的影响[J]. 重庆大学学报, 2014, 37(7): 104-109.
|
[26] |
杨丹丹, 潘冬梅, 刘圣鹏, 等. 餐厨垃圾乳酸菌发酵生产生物饲料的研究[J]. 中国农学通报, 2016, 32(26): 1-5. doi: 10.11924/j.issn.1000-6850.casb16020067
|
[27] |
任立斌, 杨军, 白圆. 以黑水虻为核心的新型餐厨垃圾处理系统的构建[J]. 甘肃科技, 2020, 36(15): 54-57. doi: 10.3969/j.issn.1000-0952.2020.15.018
|
[28] |
徐长勇, 宋薇, 赵树青, 等. 餐厨垃圾饲料化技术的同源性污染研究[J]. 环境卫生工程, 2011, 19(1): 9-10. doi: 10.3969/j.issn.1005-8206.2011.01.004
|
[29] |
屠进, 沈又幸. 影响垃圾焚烧发电厂效率主要因素的分析[J]. 浙江电力, 2000(6): 32-34. doi: 10.3969/j.issn.1007-1881.2000.05.011
|
[30] |
LIUZZO G, VERDONE N, BRAVI M. The benefits of flue gas recirculation in waste incineration[J]. Waste Management, 2007, 27(1): 106-116. doi: 10.1016/j.wasman.2006.01.002
|
[31] |
李欢, 金宜英, 李洋洋. 生活垃圾处理的碳排放和减排策略[J]. 中国环境科学, 2011, 31(2): 259-264.
|
[32] |
童胜宝, 刘文刚, 王智. 餐厨垃圾预处理工艺研究及现场应用[J]. 四川环境, 2021, 40(1): 233-238.
|
[33] |
边潇, 宫徽, 阎中, 等. 餐厨垃圾不同“收集-处理”模式的碳排放估算对比[J]. 环境工程学报, 2019, 13(2): 449-456.
|
[34] |
张园, 耿春女, 何承文, 等. 堆肥过程中有机质和微生物群落的动态变化[J]. 生态环境学报, 2011, 20(11): 1745-1752. doi: 10.3969/j.issn.1674-5906.2011.11.028
|
[35] |
任连海, 钱枫, 曹栩然, 等. 餐厨垃圾好氧堆肥过程参数的变化规律分析[J]. 北京工商大学学报(自然科学版), 2007(2): 1-4.
|
[36] |
绳以健, 刘玉德. 餐厨垃圾好氧堆肥反应动力学研究[J]. 环境卫生工程, 2014, 22(2): 40-42. doi: 10.3969/j.issn.1005-8206.2014.02.014
|
[37] |
周营, 朱能武, 刘博文, 等. 微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析[J]. 环境工程学报, 2018, 12(1): 294-303.
|
[38] |
IPCC. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. 2019.
|
[39] |
赵磊, 陈德珍, 刘光宇, 等. 垃圾热化学转化利用过程中碳排放的两种计算方法[J]. 环境科学学报, 2010, 30(8): 1634-1641.
|
[40] |
何品晶, 陈淼, 杨娜, 等. 我国生活垃圾焚烧发电过程中温室气体排放及影响因素:以上海某城市生活垃圾焚烧发电厂为例[J]. 中国环境科学, 2011, 31(3): 402-407.
|
[41] |
亓鹏玉. 城市污水处理厂温室气体的释放量估算研究[J]. 低碳世界, 2016(33): 7-8.
|
[42] |
DI X, NIE Z, YUAN B, et al. Life cycle inventory for electricity generation in China[J]. International Journal of Life Cycle Assessment, 2007, 12(4): 217-224. doi: 10.1065/lca2007.05.331
|
[43] |
TAUBER J, PARRAVICINI V, SVARDAL K, et al. Quantifying methane emissions from anaerobic digesters[J]. Water Science & Technology, 2019, 80(9): 1654-1661.
|
[44] |
程冬茹. 汽柴油全生命周期碳排放计算[D]. 北京: 中国石油大学(北京), 2016.
|
[45] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 尿素单位产品碳排放限额: 征求意见稿[S]. 北京, 2019.
|
[46] |
SAER A, LANSING S, DAVITT N H, et al. Life cycle assessment of a food waste composting system: Environmental impact hotspots[J]. Journal of Cleaner Production, 2013, 52: 234-244.
|
[47] |
中华人民共和国国家发展改革委员会. 省级温室气体清单编制指南(试行)[R]. 北京, 2011.
|
[48] |
MOULT J A, ALLAN S R, HEWITT C N, et al. Greenhouse gas emissions of food waste disposal options for UK retailers[J]. Food Policy, 2018, 77: 50-58. doi: 10.1016/j.foodpol.2018.04.003
|
[49] |
SHARMA B K, CHANDEL M K. A life cycle assessment to compare composting schemes for the treatment of municipal solid waste in Mumbai, India[C]//Sixteenth International Waste Management and Landfill Symposium. Sardinia, Italy, 2017.
|
[50] |
深圳市住房和建设局. 深圳市环卫工程消耗量定额: SJG 61-2019[S]. 深圳, 2020.
|
[51] |
孙春旭. 垃圾分类的经济性分析: 从东京到上海[R]. 国金证券, 2019.
|
[52] |
徐钢, 李相儒, 屠翰, 等. 杭州市农村生活垃圾分类减量资源化模式经济性分析[J]. 环境污染与防治, 2019, 41(2): 240-245.
|
[53] |
李潭. 垃圾焚烧发电中厨余垃圾分离比例的影响研究[J]. 科学技术创新, 2020(19): 38-39. doi: 10.3969/j.issn.1673-1328.2020.19.022
|