[1] CHANG S C, CHOU C C K, CHAN C C, et al. Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008 [J]. Atmospheric Environment, 2010, 44(8): 1088-1096. doi: 10.1016/j.atmosenv.2009.11.046
[2] WANG L, PEDAS P, ERIKSSON D, et al. Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants [J]. Journal of Experimental Botany, 2013, 64(10): 2713-2724. doi: 10.1093/jxb/ert117
[3] OSBURN C L, HANDSEL L T, PEIERLS B J, et al. Predicting sources of dissolved organic nitrogen to an estuary from an agro-urban coastal watershed [J]. Environmental Science & Technology, 2016, 50(16): 8473-8484.
[4] CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands [J]. Nature, 2008, 451(7179): 712-715. doi: 10.1038/nature06503
[5] FARQUHAR G D, FIRTH P M, WETSELAAR R, et al. On the gaseous exchange of ammonia between leaves and the environment-determination of the ammonia compensation point [J]. Plant Physiology, 1980, 66(4): 710-714. doi: 10.1104/pp.66.4.710
[6] SCHJOERRING J K, KYLLINGSBEAK A, MORTERSEN J V, et al. Field investigations of ammonia exchange between barley plans and the atmosphere. 1. concentration profiles and flux densities of ammonia [J]. Plant Cell and Environment, 1993, 16(2): 161-167. doi: 10.1111/j.1365-3040.1993.tb00857.x
[7] SUTTON M A, SCHJOERRING J K, WYERS G P. Plant atmosphere exchange of ammonia [J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 1995, 351(1696): 261-276.
[8] FLECHARD C R, MASSAD R S, LOUBET B, et al. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange [J]. Biogeosciences, 2013, 10(7): 5183-5225. doi: 10.5194/bg-10-5183-2013
[9] NERIYNCK J, CEULEMANS R. Bidirectional ammonia exchange above a mixed coniferous forest [J]. Environmental Pollution, 2008, 154(3): 424-438. doi: 10.1016/j.envpol.2007.11.030
[10] ZHANG L, WRIGHT L P, Asman W A H. Bi-directional air-surface exchange of atmospheric ammonia: A review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models [J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D20): D20310.
[11] WANG L, IBROM A, KORHONEN J F J, et al. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies [J]. Biogeosciences, 2013, 10(2): 999-1011. doi: 10.5194/bg-10-999-2013
[12] MASSAD R S, NEMITZ E, SUTTON M A. Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere [J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10359-10386. doi: 10.5194/acp-10-10359-2010
[13] MATTSON M, HERRMANN B, JONES S. Contribution of different grass species to plant-atmosphere ammonia exchange in intensively managed grassland [J]. Biogeosciences, 2009, 6(1): 59-66. doi: 10.5194/bg-6-59-2009
[14] DAVID M, LOUBET B, CELLIER P, et al. Ammonia sources and sinks in an intensively managed grassland canopy [J]. Biogeosciences, 2009, 6(9): 1903-1915. doi: 10.5194/bg-6-1903-2009
[15] MASSAD R S, LOUBET B, TUZET A. Relationship between ammonia stomatal compensation point and nitrogen metabolism in arable crops: Current status of knowledge and potential modelling approaches[C]. Environmental Pollution, 2008, 154(3): 390-403.
[16] GRANT C A, JIA S, BROWN K R, et al. Volatile losses of NH3 from surface-applied urea and urea ammonium nitrate with and without the urease inhibitors NBPT or ammonium thiosulphate [J]. Canadian Journal of Soil Science, 1996, 76(3): 417-419. doi: 10.4141/cjss96-050
[17] HEBER R, MULLER S, MATZEL W, et al. Ammonia losses in urea fertilization, 4. influence of the urease inhibitor phosphoric acid phenyl ester diamide on the amount of NH3 losses and the fertilizing effect of urea in model and pot experiments [J]. Archiv Fur Acker Und Pflanzenbau Und Bodenkunde-Archives of Agronomy and Soil Science, 1979, 23(4): 231-240.
[18] LICHIHEB N, MYLES S, PERSONNE E, et al. Implementation of the effect of urease inhibitor on ammonia emissions following urea-based fertilizer application at a Zea mays field in central Illinois: A study with SURFATM-NH3 model [J]. Agricultural and Forest Meteorology, 2019, 269: 78-87.
[19] MARTINS M R, SANTANNA S A C, ZAMAN M, et al. Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer-N-15 recovery and maize yield in a tropical soil [J]. Agriculture Ecosystems & Environment, 2017, 247: 54-62.
[20] ZAMAN M, NGUYEN M L. BLENERHASSETT J D, et al Reducing NH3, N2O and NO3-N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers [J]. Biology and Fertility of Soils, 2008, 44(5): 693-705. doi: 10.1007/s00374-007-0252-4
[21] 徐星凯, 周礼恺, OSWALD, 等. 脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化及形态分布的影响 [J]. 土壤学报, 2000, 37(3): 339-345. doi: 10.3321/j.issn:0564-3929.2000.03.007 XU X K, ZHOU L K, OSWALD, et al. Effects of enzyme inhibitors / nitrification inhibitors on transformation and distribution of urea-N in soil [J]. Journal of Soil Science, 2000, 37(3): 339-345(in Chinese). doi: 10.3321/j.issn:0564-3929.2000.03.007
[22] 王趁义, 陈仙仙, 王兆玮, 等. 第四类脲酶抑制剂对土壤脲酶活性和微生物量的影响 [J]. 水土保持通报, 2019, 39(2): 155-160. WANG C Y, CHEN X X, WANG Z W, et al. The fourth type of urease inhibitors on soil urease activity and microbial biomass [J]. Water and Soil Conservation Notice, 2019, 39(2): 155-160(in Chinese).
[23] 姚凡云, 王立春, 多馨曲, 等. 不同氮肥对东北春玉米农田温室气体周年排放的影响 [J]. 应用生态学报, 2019, 30(4): 1303-1311. YAO F Y, WANG L C, DUO X Q, et al. Effects of different nitrogen fertilizers on annual greenhouse gas emissions of Spring Maize in Northeast China [J]. Journal of Ecological Environment, 2019, 30(4): 1303-1311(in Chinese).
[24] 朱永昶, 李玉娥, 秦晓波, 等. 控释肥和硝化抑制剂对华北春玉米N2O排放的影响 [J]. 农业环境科学学报, 2016, 35(7): 1421-1428. doi: 10.11654/jaes.2016.07.027 ZHU Y C, LI Y E, QIN X B, et al. Effects of controlled release fertilizers and nitrification inhibitors on N2O emission from spring maize in North China [J]. Journal of Agro-Environment Science, 2016, 35(7): 1421-1428(in Chinese). doi: 10.11654/jaes.2016.07.027
[25] 周旋, 吴良欢, 戴峰, 等. 新型磷酰胺类脲酶抑制剂对不同质地土壤尿素转化的影响 [J]. 应用生态学报, 2016, 27(12): 4003-4012. ZHOU X, WU L H, DAI F, et al. Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil [J]. The Journal of Applied Ecology, 2016, 27(12): 4003-4012(in Chinese).
[26] HUSTED S, SCHAAP M, HAAIMA M, SCHJOERRING J K. Apoplastic pH and ammonium concentration in leves of brassica-napus. L [J]. Plant Physiology, 1995, 109(4): 1453-1460. doi: 10.1104/pp.109.4.1453
[27] GOLLAN T, SCHURR U, SCHULZE E. D Stomatal response to drying soil in relation to changes in the xylem sap composition of helianthus-annuus. 1. The concentration of cations, anions, amino-acids in and pH of the xylem sap [J]. Plant Cell and Environment, 1992, 15(5): 551-559. doi: 10.1111/j.1365-3040.1992.tb01488.x
[28] BACON M A, WILKINSON S, DAVIES W J. pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent [J]. Plant Physiology, 1998, 118(4): 1507-1515. doi: 10.1104/pp.118.4.1507
[29] MORGAN J A, PARTON W J. Characteristics of ammonia volatilization from spring wheat [J]. Crop Science, 1989, 29(3): 726-731. doi: 10.2135/cropsci1989.0011183X002900030038x
[30] SCHJOERRING J K, HUSTED S, MATTSSON M. Physiological parameters controlling plant-atmosphere ammonia exchange [J]. Atmospheric Environment, 1998, 32(3): 491-498. doi: 10.1016/S1352-2310(97)00006-X
[31] AFFENDI N M N, MANSOR N, Ammonia stomatal compensation point of young oilseed SAMIRI S S. Addition of chemical and natural urease inhibitors in reducing ammonia and nitrous oxide losses [J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1): 253-258. doi: 10.1007/s42729-019-00136-6
[32] HUSTED S, SCHJOERRING J K, NIELSEN K H, et al. Stomatal compensation points for ammonia in oilseed rape plants under field conditions [J]. Agricultural and Forest Meteorology, 2000, 105(4): 371-383. doi: 10.1016/S0168-1923(00)00204-5