[1] DLUGOKENCKY E, TANS P. Trends in Atmospheric Carbon Dioxide[EB/OL]. [2020-4-6]. www.esrl.noaa.gov/gmd/ccgg/trends/.
[2] FRIEDLI H, LÖTSCHER H, OESCHGER H, et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries [J]. Nature, 1986, 324: 237-238. doi: 10.1038/324237a0
[3] KEELING C D, BRIX H, GRUBER N. Seasonal and long‐term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii [J]. Global Biogeochemical Cycles, 2004, 18: GB4006.
[4] RUBINO M, ETHERIDGE D M, TRUDINGER C M, et al. A revised 1000 year atmospheric δ13C‐CO2 record from Law Dome and South Pole, Antarctica [J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 8482-8499. doi: 10.1002/jgrd.50668
[5] QUAY P D, TILBROOK B, WONG C S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence [J]. Science, 1992, 256: 74-79. doi: 10.1126/science.256.5053.74
[6] BURT W J, THOMAS H, HAGENS M, et al. Carbon sources in the North Sea evaluated by means of radium and stable carbon isotope tracers [J]. Limnology and Oceanography, 2016, 61(2): 666-683. doi: 10.1002/lno.10243
[7] YANG X, XUE L, LI Y, et al. Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans [J]. Environmental Science & Technology, 2018, 52(10): 5590-5599.
[8] COTOVICZ Jr L C, KNOPPERS B A, DEIRMENDJIAN L, et al. Sources and sinks of dissolved inorganic carbon in an urban tropical coastal bay revealed by δ13C-DIC signals [J]. Estuarine, Coastal and Shelf Science, 2019, 220: 185-195. doi: 10.1016/j.ecss.2019.02.048
[9] QUAY P, SONNERUP R, WESTBY T, et al. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake [J]. Global Biogeochemical Cycles, 2003, 17(1): 1004.
[10] LERPERGER M, MCNICHOL A P, PEDEN J, et al. Oceanic uptake of CO2 re-estimated through δ13C in WOCE samples [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172: 501-512.
[11] RACAPEÉV, MONACO L, METZL N, et al. Summer and winter distribution of δ13CDIC in surface waters of the South Indian Ocean [20°S-60°S] [J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(5): 660-673. doi: 10.1111/j.1600-0889.2010.00504.x
[12] BHAVYA P S, KUMAR S, GUPTA G V M, et al. Spatio-temporal variation in δ13CDIC of a tropical eutrophic estuary (Cochin estuary, India) and adjacent Arabian Sea [J]. Continental Shelf Research, 2018, 153: 75-85. doi: 10.1016/j.csr.2017.12.006
[13] LIN H L, WANG L W, WANG C H, et al. Vertical distribution of δ13C of dissolved inorganic carbon in the northeastern South China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(5): 757-775. doi: 10.1016/S0967-0637(98)00091-0
[14] LIU Q, ZHANG J, Huang Z, et al. The stable isotope geochemical characteristics of dissolved inorganic carbon in northern South China Sea [J]. Chinese Journal of Geochemistry, 2010, 29(3): 287-292. doi: 10.1007/s11631-010-0458-2
[15] WANG H, DAI M, LIU J, et al. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary [J]. Environmental Science & Technology, 2016, 50(5): 2255-2263.
[16] WANG X, LUO C, GE T, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies [J]. Limnology and Oceanography, 2016, 61(4): 1358-1374. doi: 10.1002/lno.10301
[17] SU J, DAI M, HE B, et al. Tracing the origin of the oxygen-consuming organic matter in the hypoxic zone in a large eutrophic estuary: the lower reach of the Pearl River Estuary, China [J]. Biogeosciences, 2017, 14(18): 4085-4099. doi: 10.5194/bg-14-4085-2017
[18] WANG H, HU X, RABALAIS N N, et al. Drivers of Oxygen Consumption in the Northern Gulf of Mexico Hypoxic Waters—A Stable Carbon Isotope Perspective [J]. Geophysical Research Letters, 2018, 45(19): 10, 528-10, 538.
[19] 翟惟东. 黄海的季节性酸化现象及其调控 [J]. 中国科学:地球科学, 2018, 61(6): 647-658. doi: 10.1007/s11430-017-9151-4 ZHAI W D. Exploring seasonal acidification in the Yellow Sea [J]. Science China Earth Sciences, 2018, 61(6): 647-658(in Chinese). doi: 10.1007/s11430-017-9151-4
[20] ZHAI W D, ZHAO H, SU J, et al. Emergence of summertime hypoxia and concurrent carbonate mineral suppression in the central Bohai Sea, China [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2768-2785. doi: 10.1029/2019JG005120
[21] JIN S, WANG Y, XIA J, et al. Decline in the species richness contribution of Echinodermata to the macrobenthos in the shelf seas of China [J]. Physics and Chemistry of the Earth, 2015, 87: 43-49.
[22] BISHOP P K. Precipitation of dissolved carbonate species from natural waters for δ13C analysis—a critical appraisal [J]. Chemical Geology: Isotope Geoscience, 1990, 80(3): 251-259. doi: 10.1016/0168-9622(90)90032-8
[23] SALATA G G, ROELKE L A, CIFUENTES L A. A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon [J]. Marine Chemistry, 2000, 69(1-2): 153-161. doi: 10.1016/S0304-4203(99)00102-4
[24] KUSAKABE M. A simple method for sampling total dissolved carbonate in carbonate-rich natural waters and CO2 preparation for δ13C determination [J]. Geochemical journal, 2001, 35(6): 459-464. doi: 10.2343/geochemj.35.459
[25] SU J, CAI W J, HUSSAIN N, et al. Simultaneous determination of dissolved inorganic carbon (DIC) concentration and stable isotope (δ13C-DIC) by Cavity Ring-Down Spectroscopy: Application to study carbonate dynamics in the Chesapeake Bay [J]. Marine Chemistry, 2019, 215: 103689. doi: 10.1016/j.marchem.2019.103689
[26] BRANDES J A. Rapid and precise δ13C measurement of dissolved inorganic carbon in natural waters using liquid chromatography coupled to an isotope‐ratio mass spectrometer [J]. Limnology and Oceanography: Methods, 2009, 7(11): 730-739. doi: 10.4319/lom.2009.7.730
[27] 陈锦芳,曹建平,纪丽红. 河口水体中溶解CO2及其稳定同位素在线同时测定的技术研究——吹扫-EA-IRMS联用法 [J]. 地球与环境, 2012, 40(4): 611-617. CHEN J F, CAO J P, JI L H. Simultaneous analysis of dissolved CO2 and 13C/12C ratios in estuarine water using a modification on-line pretreatment system connected to EA-IRMS [J]. Earth and Environment, 2012, 40(4): 611-617(in Chinese).
[28] WALDRON S, MARIAN SCOTT E, VIHERMAA L E, et al. Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous‐flow isotope‐ratio mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2014, 28(10): 1117-1126. doi: 10.1002/rcm.6873
[29] 唐伟,王华,蓝高勇,等. GasBenchII-IRMS 磷酸法在线测定水中溶解无机碳碳同位素分析条件及影响因素 [J]. 中国岩溶, 2017, 36(3): 419-426. doi: 10.11932/karst20170315 TANG W, WANG H, LAN G Y, et al. A study on the test conditions and influence factors in online-phosphoric acid method for carbon isotopes of dissolved inorganic carbon compounds in water samples by Gas Bench II—IRMS [J]. Carsologica Sinica, 2017, 36(3): 419-426(in Chinese). doi: 10.11932/karst20170315
[30] 刘瑀,赵新达,张旭峰,等. 大连刺参氨基酸碳稳定同位素组成特征的分析 [J]. 环境化学, 2018, 37(2): 239-248. LIU Y, ZHAO X D, ZHANG X F, et al. Compound-specific carbon isotope analysis of amino acids for the sea cucumbers(APostichopus japonicus)from Dalian [J]. Environmental Chemistry, 2018, 37(2): 239-248(in Chinese).
[31] BECKER M, ANDERSEN N, FIEDLER B, et al. Using cavity ringdown spectroscopy for continuous monitoring of δ13C (CO2) and ƒCO2 in the surface ocean [J]. Limnology and Oceanography: Methods, 2012, 10(10): 752-766. doi: 10.4319/lom.2012.10.752
[32] DICKINSON D, BODÉS, BOECKX P. System for δ13C-CO2 and xCO2 analysis of discrete gas samples by cavity ring-down spectroscopy [J]. Atmospheric Measurement Techniques, 2017, 10(11): 4507-4519. doi: 10.5194/amt-10-4507-2017
[33] CHENG L, NORMANDEAU C, BOWDEN R, et al. An international intercomparison of stable carbon isotope composition measurements of dissolved inorganic carbon in seawater [J]. Limnology and Oceanography: Methods, 2019, 17(3): 200-209. doi: 10.1002/lom3.10300
[34] BASS A M, BIRD M I, Munksgaard N C, et al. ISO-CADICA: Isotopic-continuous, automated dissolved inorganic carbon analyser [J]. Rapid Communications in Mass Spectrometry, 2012, 26(6): 639-644. doi: 10.1002/rcm.6143
[35] TAGLIABUE A, Bopp L. Towards understanding global variability in ocean carbon‐13 [J]. Global Biogeochemical Cycles, 2008, 22: GB1025.
[36] SAMANTA S, DALAI T K, PATTANAIK J K, et al. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution [J]. Geochimica et Cosmochimica Acta, 2015, 165: 226-248. doi: 10.1016/j.gca.2015.05.040
[37] LYNCH-STIEGLITZ J, STOCKER T F, BROECKER W S, et al. The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling [J]. Global Biogeochemical Cycles, 1995, 9(4): 653-665. doi: 10.1029/95GB02574
[38] HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer, 2009.
[39] 于仁成,刘东艳. 我国近海藻华灾害现状,演变趋势与应对策略 [J]. 中国科学院院刊, 2016, 31(10): 1167-1174. YU R C, LIU D Y. Harmful algal blooms in the coastal waters of China: current situation, long-term changes and prevention strategies [J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1167-1174(in Chinese).