[1] DEMIRBAS A, ALIDRISI H, BALUBAID M A. API gravity, sulfur content, and desulfurization of crude oil [J]. Petroleum Science and Technology, 2015, 33(1): 93-101. doi: 10.1080/10916466.2014.950383
[2] TAIFAN W, BALTRUSAITIS J. Minireview: direct catalytic conversion of sour natural gas (CH4 + H2S + CO2) components to high value chemicals and fuels [J]. Catalysis Science & Technology, 2017, 7(14): 2919-2929.
[3] 岑芳, 李治平, 赖枫鹏, 等. 中国含硫天然气资源特点及前景 [J]. 新疆石油天然气, 2006, 2(4): 1-3, 11, 99. doi: 10.3969/j.issn.1673-2677.2006.04.001 CEN F, LI Z P, LAI F P, et al. The features and prospect of sulfurous gas in China [J]. Xinjiang Oil & Gas, 2006, 2(4): 1-3, 11, 99(in Chinese). doi: 10.3969/j.issn.1673-2677.2006.04.001
[4] GUPTA A K, IBRAHIM S, AL SHOAIBI A. Advances in sulfur chemistry for treatment of acid gases [J]. Progress in Energy and Combustion Science, 2016, 54: 65-92. doi: 10.1016/j.pecs.2015.11.001
[5] MA W G, WANG H, YU W, et al. Achieving simultaneous CO2 and H2 S conversion via a coupled solar-driven electrochemical approach on non-precious-metal catalysts [J]. Angewandte Chemie (International Ed. in English), 2018, 57(13): 3473-3477. doi: 10.1002/anie.201713029
[6] van STRAELEN J, GEUZEBROEK F, GOODCHILD N, et al. CO2 capture for refineries, a practical approach [J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 316-320. doi: 10.1016/j.ijggc.2009.09.022
[7] GROISIL M, IBRAHIM S, ALSHOAIBI A S, et al. Acid gas simulation for recovering syngas and sulfur[C]//Proceedings of ASME 2015 Power Conference Collocated With the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum, June 28-July 2, 2015, San Diego, California, USA. 2015.
[8] GROISIL M, IBRAHIM S, GUPTA A K, et al. Numerical examination of acid gas for syngas and sulfur recovery [J]. Energy Procedia, 2015, 75: 3066-3070. doi: 10.1016/j.egypro.2015.07.628
[9] EL-MELIH A M, IBRAHIM S, GUPTA A K, et al. Experimental examination of syngas recovery from acid gases [J]. Applied Energy, 2016, 164: 64-68. doi: 10.1016/j.apenergy.2015.11.025
[10] IBRAHIM S, RAJ A. Kinetic simulation of acid gas (H2S and CO2) destruction for simultaneous syngas and sulfur recovery [J]. Industrial & Engineering Chemistry Research, 2016, 55(24): 6743-6752.
[11] SU H, LI Y Y, LI P, et al. Simultaneous recovery of carbon and sulfur resources from reduction of CO2 with H2S using catalysts [J]. Journal of Energy Chemistry, 2016, 25(1): 110-116. doi: 10.1016/j.jechem.2015.08.009
[12] ZHAO L, LIU X Z, MU X L, et al. Highly selective conversion of H2S-CO2 to syngas by combination of non-thermal plasma and MoS2/Al2O3 [J]. Journal of CO2 Utilization, 2020, 37: 45-54. doi: 10.1016/j.jcou.2019.11.021
[13] MANENTI F. CO2 as feedstock: A new pathway to syngas[M]//12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering. Amsterdam: Elsevier, 2015: 1049-1054.
[14] BASSANI A, PIROLA C, MAGGIO E, et al. Acid gas to syngas (AG2STM) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production [J]. Applied Energy, 2016, 184: 1284-1291. doi: 10.1016/j.apenergy.2016.06.040
[15] MANENTI F, MANENTI G, MOLINARI L. Syngas from H2S and CO2: An alternative, pioneering synthesis route?[EB/OL]. 2016.
[16] BASSANI A, PIROLA C, BOZZANO G, et al. Technical feasibility of AG2STM process revamping[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2017: 385-390.
[17] BASSANI A, SPEELMANNS E M, RANZI E, et al. Enabling sulfur-rich coal sources for gasification without emissions[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2016: 1195-1200.
[18] BASSANI A, BOZZANO G, PIROLA C, et al. Sulfur rich coal gasification and low impact methanol production [J]. Journal of Sustainable Development of Energy, Water and Environment Systems, 2017, 6(1): 210-226. doi: 10.13044/j.sdewes.d5.0188
[19] BASSANI A, PREVITALI D, PIROLA C, et al. Mitigating carbon dioxide impact of industrial steam methane reformers by acid gas to syngas technology: Technical and environmental feasibility [J]. Journal of Sustainable Development of Energy, Water and Environment Systems, 2020, 8(1): 71-87. doi: 10.13044/j.sdewes.d7.0258
[20] EREKSON E J, MIAO F Q. Gasoline from natural gas by sulfur processing. Quarterly progress report, January 1994——March 1994, final version[R]. Office of Scientific and Technical Information (OSTI), 1994.
[21] WANG W M, ZHANG X, XIA Z Q, et al. Catalytic synthesis of methanethiol from carbon disulfide and hydrogen over sulfided KMo/Al2O3 catalysts [J]. Catalysis Letters, 2015, 145(7): 1521-1528. doi: 10.1007/s10562-015-1541-4
[22] JAVADI M, MOGHIMAN M. Hydrogen and carbon black production from thermal decomposition of sub-quality natural gas [J]. International Journal of Spray and Combustion Dynamics, 2010, 2(1): 85-101. doi: 10.1260/1756-8277.2.1.85
[23] TAZIMI M, JAVADI S M, NABAVI S S. The effect of H2S on hydrogen and carbon black production from sour natural gas [J]. Applied Mechanics and Materials, 2011, 110-/116: 2131-2138. doi: 10.4028/www.scientific.net/AMM.110-116.2131
[24] MARTÍNEZ-SALAZAR A L, MELO-BANDA J A, CORONEL-GARCÍA M A, et al. Technoeconomic analysis of hydrogen production via hydrogen sulfide methane reformation [J]. International Journal of Hydrogen Energy, 2019, 44(24): 12296-12302. doi: 10.1016/j.ijhydene.2018.11.023
[25] KARAN K, BEHIE L A. CS2Formation in the Claus reaction furnace: A kinetic study of methane–sulfur and methane–hydrogen sulfide reactions [J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3304-3313.
[26] EL-MELIH A M, AL SHOAIBI A, GUPTA A K. Hydrogen sulfide reformation in the presence of methane [J]. Applied Energy, 2016, 178: 609-615. doi: 10.1016/j.apenergy.2016.06.053
[27] LI Y, YU X L, GUO Q H, et al. Kinetic study of decomposition of H2S and CH4 for H2 production using detailed mechanism [J]. Energy Procedia, 2017, 142: 1065-1070. doi: 10.1016/j.egypro.2017.12.357
[28] EL-MELIH A M, IOVINE L, AL SHOAIBI A, et al. Production of hydrogen from hydrogen sulfide in presence of methane [J]. International Journal of Hydrogen Energy, 2017, 42(8): 4764-4773. doi: 10.1016/j.ijhydene.2016.11.096
[29] HUANG C P, T-RAISSI A. Liquid hydrogen production via hydrogen sulfide methane reformation [J]. Journal of Power Sources, 2008, 175(1): 464-472. doi: 10.1016/j.jpowsour.2007.09.079
[30] LI Y, YU X L, LI H J, et al. Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production [J]. Applied Energy, 2017, 208: 905-919. doi: 10.1016/j.apenergy.2017.09.059
[31] MEGALOFONOS S K, PAPAYANNAKOS N G. Kinetics of the catalytic reaction of methane and hydrogen sulphide over a PtAl2O3 catalyst [J]. Applied Catalysis A: General, 1996, 138(1): 39-55. doi: 10.1016/0926-860X(95)00227-8
[32] MARTÍNEZ-SALAZAR A L, MELO-BANDA J A, ESQUIVEL J M D, et al. Hydrogen production by methane and hydrogen sulphide reaction: Kinetics and modeling study over Mo/La2O3-ZrO2 catalyst [J]. International Journal of Hydrogen Energy, 2015, 40(48): 17354-17360. doi: 10.1016/j.ijhydene.2015.03.074
[33] MARTÍNEZ-SALAZAR A L, MELO-BANDA J A, REYES de la TORRE A I, et al. Hydrogen production by methane reforming with H2S using Mo, Cr/ZrO2-SBA15 and Mo, Cr/ZrO2-La2O3 catalysts [J]. International Journal of Hydrogen Energy, 2015, 40(48): 17272-17283. doi: 10.1016/j.ijhydene.2015.09.154
[34] 梁皓, 尹泽群, 刘全杰. 甲烷硫化氢重整制氢的方法: CN109721028A[P]. [2019-05-07]. LIANG H, YIN Z Q, LIU Q J. Method for producing hydrogen by reforming methane and hydrogen sulfide: CN109721028A[P]. [2019-05-07](in Chinese).
[35] MEGALOFONOS S K, PAPAYANNAKOS N G. Kinetics of catalytic reaction of methane and hydrogen sulphide over MoS2 [J]. Applied Catalysis A: General, 1997, 165(1/2): 249-258.
[36] 梁皓, 尹泽群, 刘全杰, 等. 一种硫化氢甲烷重整制氢的方法: CN109250763A[P]. 2019-01-22. LIANG H, YIN Z Q, LIU Q J, et al. Method for hydrogen production by reforming of hydrogen sulfide and methane: CN109250763A[P]. 2019-01-22(in Chinese).
[37] GALINDO-HERNÁNDEZ F, DOMÍNGUEZ J M, PORTALES B. Structural and textural properties of Fe2O3/γ-Al2O3 catalysts and their importance in the catalytic reforming of CH4 with H2S for hydrogen production [J]. Journal of Power Sources, 2015, 287: 13-24. doi: 10.1016/j.jpowsour.2015.04.015
[38] 田立秋, 张怀有, 孙伟. 利用副产硫化氢发展精细有机硫化工产品的分析 [J]. 煤化工, 2015, 43(5): 20-23. doi: 10.3969/j.issn.1005-9598.2015.05.006 TIAN L Q, ZHANG H Y, SUN W. Analysis on the development of fine organic sulfur chemical products based on the hydrogen sulfide [J]. Coal Chemical Industry, 2015, 43(5): 20-23(in Chinese). doi: 10.3969/j.issn.1005-9598.2015.05.006
[39] 纪罗军. 硫化氢气体制备甲硫醇的现状与前景 [J]. 精细石油化工进展, 2003, 4(3): 11-13. doi: 10.3969/j.issn.1009-8348.2003.03.003 JI L J. The present status and prospects of producing methanet hiol from hydrogen sulfide [J]. Advances in Fine Fetrochemicals, 2003, 4(3): 11-13(in Chinese). doi: 10.3969/j.issn.1009-8348.2003.03.003
[40] PASHIGREVA A V, KONDRATIEVA E, BERMEJO-DEVAL R, et al. Methanol thiolation over Al2O3 and WS2 catalysts modified with cesium [J]. Journal of Catalysis, 2017, 345: 308-318. doi: 10.1016/j.jcat.2016.11.036
[41] WEBER-STOCKBAUER M, GUTIÉRREZ O Y, BERMEJO-DEVAL R, et al. Cesium induced changes in the acid-base properties of metal oxides and the consequences for methanol thiolation [J]. ACS Catalysis, 2019, 9(10): 9245-9252. doi: 10.1021/acscatal.9b02537
[42] 许志志, 陆继长, 刘攀, 等. 高硫合成气法合成甲硫醇研究进展 [J]. 分子催化, 2017, 31(4): 390-400. XU Z Z, LU J C, LIU P, et al. Developments in the synthesis of methanthiol by high H2S-containing syngas [J]. Journal of Molecular Catalysis (China), 2017, 31(4): 390-400(in Chinese).
[43] BARRAULT J, BOULINGUIEZ M, FORQUY C, et al. Synthesis of methyl mercaptan from carbon oxides and H2S with tungsten—alumina catalysts [J]. Applied Catalysis, 1987, 33(2): 309-330. doi: 10.1016/S0166-9834(00)83064-X
[44] GORDON H. Preparation of methyl mercaptan from carbon oxides: doi: US4449006A[P].03/13/1986.
[45] GUTIÉRREZ O Y, KAUFMANN C, LERCHER J A. Synthesis of methanethiol from carbonyl sulfide and carbon disulfide on (co)K-promoted sulfide Mo/SiO2 catalysts [J]. ACS Catalysis, 2011, 1(11): 1595-1603. doi: 10.1021/cs200455k
[46] OLIN J F, DAYTON O, BUCHHOLZ B, et al. Progress for perparation of methyl mercaptan: US3070632A [P]. 1962-12-25.
[47] LIU P, LU J C, XU Z Z, et al. The effect of alkali metals on the synthesis of methanethiol from CO/H2/H2S mixtures on the SBA-15 supported Mo-based catalysts [J]. Molecular Catalysis, 2017, 442: 39-48. doi: 10.1016/j.mcat.2017.08.022
[48] YANG Y Q, YUAN Y Z, DAI S J, et al. The catalytic properties of supported K2MoS4/SiO2 catalyst for methanethiol synthesis from high H2S-content syngas [J]. Catalysis Letters, 1998, 54(1/2): 65-68. doi: 10.1023/A:1019071704226
[49] DAI S J, YANG Y Q, YUAN Y Z, et al. On methanethiol synthesis from H2S‐containing syngas over K2MoS4/SiO2 catalysts promoted with transition metal oxides [J]. Catalysis letters, 1999, 61(3): 157-160.
[50] YANG Y Q, DAI S J, YUAN Y Z, et al. The promoting effects of La2O3 and CeO2 on K2MoS4/SiO2 catalyst for methanthiol synthesis from syngas blending with H2S [J]. Applied Catalysis A: General, 2000, 192(2): 175-180. doi: 10.1016/S0926-860X(99)00342-7
[51] CORDOVA A, BLANCHARD P, LANCELOT C, et al. Probing the nature of the active phase of molybdenum-supported catalysts for the direct synthesis of methylmercaptan from syngas and H2S [J]. ACS Catalysis, 2015, 5(5): 2966-2981. doi: 10.1021/cs502031f
[52] CORDOVA A, BLANCHARD P, SALEMBIER H, et al. Direct synthesis of methyl mercaptan from H2/CO/H2S using tungsten based supported catalysts: Investigation of the active phase [J]. Catalysis Today, 2017, 292: 143-153. doi: 10.1016/j.cattod.2016.10.032
[53] YU M, KOSINOV N, van HAANDEL L, et al. Investigation of the active phase in K-promoted MoS2 catalysts for methanethiol synthesis [J]. ACS Catalysis, 2020, 10(3): 1838-1846. doi: 10.1021/acscatal.9b03178
[54] YANG Y Q, YANG H, WANG Q, et al. Study of the supported K2MoO4 catalyst for methanethiol synthesis by one step from high H2S-containing syngas [J]. Catalysis Letters, 2001, 74(3/4): 221-225. doi: 10.1023/A:1016614004566
[55] ZHANG B J, TAYLOR S H, HUTCHINGS G J. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3 [J]. New J Chem, 2004, 28(4): 471-476. doi: 10.1039/B312340P
[56] MUL G, WACHS I E, HIRSCHON A S. Catalytic synthesis of methanethiol from hydrogen sulfide and carbon monoxide over vanadium-based catalysts [J]. Catalysis Today, 2003, 78(1/2/3/4): 327-337.
[57] HUANG S, HE S F, DENG L, et al. One-step synthesis of methanethiol with mixture gases (CO/H2S/H2) over SBA-15 supported Mo-based catalysts [J]. Procedia Engineering, 2015, 102: 684-691. doi: 10.1016/j.proeng.2015.01.166
[58] CHEN A P, WANG Q, HAO Y J, et al. The promoting effect of tellurium on K2MoO4/SiO2 catalyst for methanethiol synthesis from high H2S-containing syngas [J]. Catalysis Letters, 2007, 118(3/4): 295-299.
[59] MARTINE BOULINGUIEZ P, CHRISTIAN FORQUY L, JOEL BARRAULT L. Progress for the production of methyl mercaptan from oxides of carbon: US4665242 [P]. 1987-5-12.
[60] 黄缌, 邓莲, 王晶, 等. 负载型钼基催化剂的制备及其合成甲硫醇的性能研究 [J]. 昆明理工大学学报(自然科学版), 2014, 39(6): 19-24. HUANG S, DENG L, WANG J, et al. Preparation of Mo-based catalysts and performance in synthesis of methyl mercaptan [J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2014, 39(6): 19-24(in Chinese).
[61] BUCHHOLZ B. Process for the manufacture of methyl mercaptan from carbon oxides: US4410731[P]. 10/18/1983.
[62] CHEN A P, WANG Q, LI Q L, et al. Direct synthesis of methanethiol from H2S-rich syngas over sulfided Mo-based catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 69-76.
[63] GUTIÉRREZ O Y, KAUFMANN C, HRABAR A, et al. Synthesis of methyl mercaptan from carbonyl sulfide over sulfide K2MoO4/SiO2 [J]. Journal of Catalysis, 2011, 280(2): 264-273. doi: 10.1016/j.jcat.2011.03.027
[64] GUTIÉRREZ O Y, KAUFMANN C, LERCHER J A. Influence of potassium on the synthesis of methanethiol from carbonyl sulfide on sulfided Mo/Al2O3 catalyst [J]. ChemCatChem, 2011, 3(9): 1480-1490. doi: 10.1002/cctc.201100124
[65] GUTIÉRREZ O Y, ZHONG L S, ZHU Y Z, et al. Synthesis of methanethiol from CS2on Ni-, co-, and K-doped MoS2/SiO2Catalysts [J]. ChemCatChem, 2013, 5(11): 3249-3259. doi: 10.1002/cctc.201300210