[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020. National Bureau of Statistics of China. China statistical yearbook[M]. China Statistics Press, 2020(in Chinese).
[2] RENOU S, GIVAUDAN J G, POULAIN S, et al. Landfill leachate treatment: Review and opportunity [J]. Journal of Hazardous Materials, 2008, 150(3): 468-493. doi: 10.1016/j.jhazmat.2007.09.077
[3] YANG N, DAMGAARD A, KJELDSEN P, et al. Quantification of regional leachate variance from municipal solid waste landfills in China [J]. Waste Management, 2015, 46: 362-372. doi: 10.1016/j.wasman.2015.09.016
[4] HE P J, XUE J F, SHAO L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill [J]. Water Research, 2006, 40(7): 1465-1473. doi: 10.1016/j.watres.2006.01.048
[5] LU F, CHANG C H, LEE D J, et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate [J]. Chemosphere, 2009, 74(4): 575-582. doi: 10.1016/j.chemosphere.2008.09.060
[6] QIU J J, LÜ F, ZHANG H, et al. UPLC Orbitrap MS/MS-based fingerprints of dissolved organic matter in waste leachate driven by waste age [J]. Journal of Hazardous Materials, 2020, 383: 121205. doi: 10.1016/j.jhazmat.2019.121205
[7] ZHENG Z, HE P J, SHAO L M, et al. Phthalic acid esters in dissolved fractions of landfill leachates [J]. Water Research, 2007, 41(20): 4696-4702. doi: 10.1016/j.watres.2007.06.040
[8] LANG J R, ALLRED B M, FIELD J A, et al. National estimate of per- and polyfluoroalkyl substance (PFAS) Release to U. S. municipal landfill leachate [J]. Environmental Science & Technology, 2017, 51(4): 2197-205.
[9] MIYAKE Y, TOKUMURA M, WANG Q, et al. Identification of novel phosphorus-based flame retardants in curtains purchased in Japan using orbitrap mass spectrometry [J]. Environmental Science & Technology Letters, 2018, 5(7): 448-455.
[10] LIU A F, SHI J B, QU G B, et al. Identification of emerging brominated chemicals as the transformation products of tetrabromobisphenol A (TBBPA) derivatives in soil [J]. Environmental Science & Technology, 2017, 51(10): 5434-5444.
[11] ALYGIZAKIS N, SAMANIPOUR S, HOLLENDER J, et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry [J]. Environmental Science & Technology, 2018, 52(9): 5135-5144.
[12] GAGO-FERRERO P, KRETTEK A, FISCHER S, et al. Suspect screening and regulatory databases: A powerful combination to identify emerging micropollutants [J]. Environmental Science & Technology, 2018, 52(12): 6881-6894.
[13] RAPP-WRIGHT H, MCENEFF G, MURPHY B, et al. Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry [J]. Journal of Hazardous Materials, 2017, 329: 11-21. doi: 10.1016/j.jhazmat.2017.01.008
[14] TSUGAWA H, CAJKA T, KIND T, et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis [J]. Nature Methods, 2015, 12(6): 523-526. doi: 10.1038/nmeth.3393
[15] SAMANIPOUR S, REID M J, BÆK K, et al. Combining a deconvolution and a universal library search algorithm for the nontarget analysis of data-independent acquisition mode liquid Chromatography−High-resolution mass spectrometry results [J]. Environmental Science & Technology, 2018, 52(8): 4694-4701.
[16] VEENAAS C, BIGNERT A, LILJELIND P, et al. Nontarget screening and time-trend analysis of sewage sludge contaminants via two-dimensional gas chromatography-high resolution mass spectrometry [J]. Environmental Science & Technology, 2018, 52(14): 7813-7822.
[17] PETER K T, TIAN Z Y, WU C, et al. Using high-resolution mass spectrometry to identify organic contaminants linked to urban stormwater mortality syndrome in Coho Salmon [J]. Environmental Science & Technology, 2018, 52(18): 10317-10327.
[18] RATHGEB A, CAUSON T, KRACHLER R, et al. From the peat bog to the estuarine mixing zone: Common features and variances in riverine dissolved organic matter determined by non-targeted analysis [J]. Marine Chemistry, 2017, 194: 158-167. doi: 10.1016/j.marchem.2017.06.012
[19] van ZOMEREN A, COMANS R N J. Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure [J]. Environmental Science & Technology, 2007, 41(19): 6755-6761.
[20] LABANOWSKI J, PALLIER V, FEUILLADE-CATHALIFAUD G. Study of organic matter during coagulation and electrocoagulation processes: Application to a stabilized landfill leachate [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 166-172.
[21] ZHANG H, CHANG C H, LÜ F, et al. Estrogenic activity of fractionate landfill leachate [J]. Science of the Total Environment, 2009, 407(2): 879-886. doi: 10.1016/j.scitotenv.2008.09.055
[22] XIAO K K, ABBT-BRAUN G, HORN H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review [J]. Water Research, 2020, 187: 116441. doi: 10.1016/j.watres.2020.116441
[23] SPRANGER T, PINXTEREN D V, REEMTSMA T, et al. 2D liquid chromatographic fractionation with ultra-high resolution MS analysis resolves a vast molecular diversity of tropospheric particle organics [J]. Environmental Science & Technology, 2019, 53(19): 11353-11363.
[24] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[25] MATTHEWS B J H, JONES A C, THEODOROU N K, et al. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs [J]. Marine Chemistry, 1996, 55(3-4): 317-32. doi: 10.1016/S0304-4203(96)00039-4
[26] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation−Emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[27] WU J, ZHANG H, HE P J, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis [J]. Water Research, 2011, 45(4): 1711-1719. doi: 10.1016/j.watres.2010.11.022
[28] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955
[29] KELLERMAN A M, KOTHAWALA D N, DITTMAR T, et al. Persistence of dissolved organic matter in lakes related to its molecular characteristics [J]. Nature Geoscience, 2015, 8(6): 454-457. doi: 10.1038/ngeo2440
[30] SCHMIDT M W, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7367): 49-56. doi: 10.1038/nature10386
[31] SMITH D F, PODGORSKI D C, RODGERS R P, et al. 21 Tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures [J]. Analytical Chemistry, 2018, 90(3): 2041-2047. doi: 10.1021/acs.analchem.7b04159
[32] HAWKES J A, DITTMAR T, PATRIARCA C, et al. Evaluation of the Orbitrap mass spectrometer for the molecular fingerprinting analysis of natural dissolved organic matter [J]. Analytical Chemistry, 2016, 88(15): 7698-7704. doi: 10.1021/acs.analchem.6b01624
[33] PATRIARCA C, BERGQUIST J, SJÖBERG P J R, et al. Online HPLC-ESI-HRMS method for the analysis and comparison of different dissolved organic matter samples [J]. Environmental Science & Technology, 2018, 52(4): 2091-2099.
[34] STENSON A C, MARSHALL A G, COOPER W T. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra [J]. Analytical Chemistry, 2003, 75(6): 1275-1284. doi: 10.1021/ac026106p
[35] KOCH B P, DITTMAR T, WITT M, et al. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter [J]. Analytical Chemistry, 2007, 79(4): 1758-1763. doi: 10.1021/ac061949s
[36] SUTTON R, SPOSITO G. Molecular structure in soil humic substances: the new view [J]. Environmental Science & Technology, 2005, 39(23): 9009-9015.
[37] DEVARAJAN D, LIANG L Y, GU B H, et al. Molecular dynamics simulation of the structures, dynamics, and aggregation of dissolved organic matter [J]. Environmental Science & Technology, 2020, 54(21): 13527-13537.
[38] KRUVE A. Strategies for drawing quantitative conclusions from nontargeted liquid chromatography-high-resolution mass spectrometry analysis [J]. Analytical Chemistry, 2020, 92(7): 4691-4699. doi: 10.1021/acs.analchem.9b03481
[39] HITES R A, JOBST K J. Is nontargeted screening reproducible? [J]. Environmental Science & Technology, 2018, 52(21): 11975-11976.
[40] YU Z F, HE P J, SHAO L M, et al. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age [J]. Water Research, 2016, 106: 583-592. doi: 10.1016/j.watres.2016.10.042
[41] HE P J, CHEN L Y, SHAO L M, et al. Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate [J]. Water Research, 2019, 159: 38-45. doi: 10.1016/j.watres.2019.04.060
[42] OMAN C B, JUNESTEDT C. Chemical characterization of landfill leachates--400 parameters and compounds [J]. Waste Management, 2008, 28(10): 1876-1891. doi: 10.1016/j.wasman.2007.06.018
[43] HE P, HUANG J, YU Z, et al. Antibiotic resistance contamination in four Italian municipal solid waste landfills sites spanning 34 years [J]. Chemosphere, 2021, 266: 129182. doi: 10.1016/j.chemosphere.2020.129182
[44] 郑仲, 何品晶, 章骅, 等. 城市生活垃圾中邻苯二甲酸酯的源分布特征 [J]. 同济大学学报(自然科学版), 2007, 35(12): 1646-1650. doi: 10.3321/j.issn:0253-374X.2007.12.013 ZHENG Z, HE P J, ZHANG H, et al. Distribution of phthalic acid esters in municipal solid waste [J]. Journal of Tongji University (Natural Science), 2007, 35(12): 1646-1650(in Chinese). doi: 10.3321/j.issn:0253-374X.2007.12.013
[45] DITTMAR T, KOCH B, HERTKORN N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater [J]. Limnology and Oceanography-Methods, 2008, 6(6): 230-235. doi: 10.4319/lom.2008.6.230
[46] GURTLER B K, VETTER T A, PERDUE E M, et al. Combining reverse osmosis and pulsed electrical current electrodialysis for improved recovery of dissolved organic matter from seawater [J]. Journal of Membrane Science, 2008, 323(2): 328-336. doi: 10.1016/j.memsci.2008.06.025
[47] THURMAN E M, MALCOLM R L. Preparative isolation of aquatic humic substances [J]. Environmental Science & Technology, 1981, 15(4): 463-466.
[48] KRUGER B R, DALZELL B J, MINOR E C. Effect of organic matter source and salinity on dissolved organic matter isolation via ultrafiltration and solid phase extraction [J]. Aquatic Sciences, 2011, 73(3): 405-417. doi: 10.1007/s00027-011-0189-4
[49] LI Y, HARIR M, LUCIO M, et al. Proposed guidelines for solid phase extraction of Suwannee River dissolved organic matter [J]. Analytical Chemistry, 2016, 88(13): 6680-6688. doi: 10.1021/acs.analchem.5b04501
[50] GREEN N W, MICHAEL PERDUE E, AIKEN G R, et al. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter [J]. Marine Chemistry, 2014, 161: 14-19. doi: 10.1016/j.marchem.2014.01.012
[51] LI Y, HARIR M, UHL J, et al. How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation [J]. Water Research, 2017, 116: 316-323. doi: 10.1016/j.watres.2017.03.038
[52] HOLLENDER J, SCHYMANSKI E L, SINGER H P, et al. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? [J]. Environmental Science & Technology, 2017, 51(20): 11505-11512.
[53] SCHYMANSKI E L, SINGER H P, SLOBODNIK J, et al. Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis [J]. Analytical and Bioanalytical Chemistry, 2015, 407(21): 6237-6255. doi: 10.1007/s00216-015-8681-7
[54] LI H, CAI Y P, GUO Y, et al. MetDIA: targeted metabolite extraction of multiplexed MS/MS spectra generated by data-independent acquisition [J]. Analytical Chemistry, 2016, 88(17): 8757-8764. doi: 10.1021/acs.analchem.6b02122
[55] SILVA L K, HILE G A, CAPELLA K M, et al. Quantification of 19 aldehydes in human serum by headspace SPME/GC/high-resolution mass spectrometry [J]. Environmental Science & Technology, 2018, 52(18): 10571-10579.
[56] DROLLETTE B, BRENNEIS R J, PLATA D L. Oligomer-specific, short chain linear alcohol ethoxylate quantification via comprehensive two-dimensional gas chromatography [J]. Environmental Science & Technology Letters, 2018, 5(9): 539-545.
[57] 邵立明, 邓樱桃, 仇俊杰, 等. 工程规模长填龄渗滤液膜生物-纳滤组合设施各单元污染物去除效能 [J]. 环境科学, 2021, 42(3): 1469-1476. SHAO L M, DENG Y T, QIU J J, et al. Pollutant removal efficiency of different units along a mature landfill leachate treatment process in a membrane biological reactor-nanofiltration combined facility [J]. Environmental Science, 2021, 42(3): 1469-1476(in Chinese).
[58] QIU J J, LÜ F, ZHANG H, et al. Persistence of native and bio-derived molecules of dissolved organic matters during simultaneous denitrification and methanogenesis for fresh waste leachate [J]. Water Research, 2020, 175: 15705.
[59] 何品晶, 徐延春, 吕凡, 等. 芬顿和双氧水紫外处理稳定渗滤液的光谱特征 [J]. 同济大学学报(自然科学版), 2016, 44(2): 249-254. doi: 10.11908/j.issn.0253-374x.2016.02.013 HE P J, XU Y C, LV F, et al. Spectroscopic characteristics of mature leachate during Fenton and H2O2-UV treatment process [J]. Journal of Tongji University(Natural Science), 2016, 44(2): 249-254(in Chinese). doi: 10.11908/j.issn.0253-374x.2016.02.013
[60] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial [J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572
[61] YU M D, XI B D, ZHU Z Q, et al. Fate and removal of aromatic organic matter upon a combined leachate treatment process [J]. Chemical Engineering Journal, 2020, 401: 126157. doi: 10.1016/j.cej.2020.126157
[62] HE P J, LIU W Y, QIU J J, et al. Improvement criteria for different advanced technologies towards bio-stabilized leachate based on molecular subcategories of DOM [J]. Journal of Hazardous Materials, 2021, 414: 125463. doi: 10.1016/j.jhazmat.2021.125463
[63] SHAO L M, DENG Y T, QIU J J, et al. DOM chemodiversity pierced performance of each tandem unit along a full-scale “MBR+NF” process for mature landfill leachate treatment [J]. Water Research, 2021, 195: 117000. doi: 10.1016/j.watres.2021.117000
[64] KLEIN S, WORCH E, KNEPPER T P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany [J]. Environmental Science & Technology, 2015, 49(10): 6070-6076.
[65] OTURAN N, van HULLEBUSCH E D, ZHANG H, et al. Occurrence and removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes [J]. Environmental Science & Technology, 2015, 49(20): 12187-12196.
[66] HE P J, ZHENG Z, ZHANG H, et al. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition [J]. Science of the Total Environment, 2009, 407(17): 4928-4933. doi: 10.1016/j.scitotenv.2009.05.036
[67] ZHENG Z, ZHANG H, HE P J, et al. Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process [J]. Chemosphere, 2009, 75(2): 180-186. doi: 10.1016/j.chemosphere.2008.12.011
[68] WEIZEL A, SCHLUSENER M P, DIERKES G, et al. Analysis of the aerobic biodegradation of glucocorticoids: Elucidation of the kinetics and transformation reactions [J]. Water Research, 2020, 174: 115561. doi: 10.1016/j.watres.2020.115561
[69] GRIBBLE G W. Naturally occurring organohalogen compounds [J]. Accounts of Chemical Research, 1998, 31(3): 141-152. doi: 10.1021/ar9701777
[70] SCHOLLÉE J E, SCHYMANSKI E L, AVAK S E, et al. Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic [J]. Analytical Chemistry, 2015, 87(24): 12121-12129. doi: 10.1021/acs.analchem.5b02905