[1] SOMORJAI GA, RIOUX RM. High technology catalysts towards 100% selectivity fabrication, characterization and reaction studies [J]. Catalysis Today, 2005, 100(3-4): 201-215. doi: 10.1016/j.cattod.2004.07.059
[2] ROLDAN CUENYA B. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects [J]. Thin Solid Films, 2010, 518(12): 3127-3150. doi: 10.1016/j.tsf.2010.01.018
[3] 谢伟. 多相催化臭氧化技术在水资源污染治疗中的研究分析 [J]. 广东化工, 2019, 46(7): 128, 121. XIE W. Research and analysis of heterogeneous catalytic ozonation technology in the treatment of water pollution [J]. Guangdong Chemical Industry, 2019, 46(7): 128, 121(in Chinese).
[4] KANG C H, XU J L, XU C C, et al. Poly(butylene terephthalate) filled with Sb2O3 nanoparticles: Effects of particle surface treatment, particle size, particle morphology and particle loading on mechanical properties of composites [J]. Integrated Ferroelectrics, 2020, 210(1): 141-159. doi: 10.1080/10584587.2020.1728855
[5] BEERTHUIS R, DE RIJK J W, DEELEY JMS, et al. Particle size effects in copper-catalyzed hydrogenation of ethyl acetate [J]. Journal of Catalysis, 2020, 388: 30-37. doi: 10.1016/j.jcat.2020.05.006
[6] PENG R S, LI S J, SUN X B, et al. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts [J]. Applied Catalysis B: Environmental, 2018, 220: 462-470. doi: 10.1016/j.apcatb.2017.07.048
[7] CAO S W, TAO F F, TANG Y, et al. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts [J]. Chemical Society Reviews, 2016, 45(17): 4747-4765. doi: 10.1039/C6CS00094K
[8] WALSH M J, YOSHIDA K, KUWABARA A, et al. On the structural origin of the catalytic properties of inherently strained ultrasmall decahedral gold nanoparticles [J]. Nano Letters, 2012, 12(4): 2027-2031. doi: 10.1021/nl300067q
[9] QIN Z H, LEWANDOWSKI M, SUN Y N, et al. Encapsulation of Pt nanoparticles as a result of strong Metal−Support interaction with Fe3O4 (111) [J]. The Journal of Physical Chemistry C, 2008, 112(27): 10209-10213. doi: 10.1021/jp801756q
[10] DATTA A, ZIADI Z, KUMAR P, et al. Utilizing ballistic nanoparticle impact to reconfigure the metal support interaction in Pt-TiN electrocatalysts [J]. Nanoscale Horizons, 2020, 5(10): 1407-1414. doi: 10.1039/D0NH00344A
[11] HUMPHREYS J, LAN R, CHEN S, et al. Improved stability and activity of Fe-based catalysts through strong metal support interactions due to extrinsic oxygen vacancies in Ce(0.8)Sm(0.2)O(2-delta)for the efficient synthesis of ammonia [J]. Journal of Materials Chemistry A, 2020, 8(32): 16676-16689. doi: 10.1039/D0TA05238H
[12] WANG L, FANG W, WANG L, et al. NbOPO4 supported Rh nanoparticles with strong metal-support interaction for selective CO2 hydrogenation [J]. ChemSusChem, 2020, 13(23): 6300-6306.
[13] XU Z, ZHANG Y, QIN L, et al. Crystal facet induced single-atom Pd/CoxOy on a tunable metal-support interface for low temperature catalytic oxidation [J]. Small, 2020, 16(38): 2002071. doi: 10.1002/smll.202002071
[14] GOODMAN E D, DAI S, YANG A C, et al. Uniform Pt/Pd bimetallic nanocrystals demonstrate platinum effect on palladium methane combustion activity and stability [J]. ACS Catalysis, 2017, 7(7): 4372-4380. doi: 10.1021/acscatal.7b00393
[15] AN K, SOMORJAI G A. Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies [J]. Catalysis Letters, 2015, 145(1): 233-248. doi: 10.1007/s10562-014-1399-x
[16] MERTE L R, AHMADI M, BEHAFARID F, et al. Correlating catalytic methanol oxidation with the structure and oxidation state of size-selected Pt nanoparticles [J]. ACS Catalysis, 2013, 3(7): 1460-1468. doi: 10.1021/cs400234h
[17] YANG J C, SMALL M W, GRIESHABER R V, et al. Recent developments and applications of electron microscopy to heterogeneous catalysis [J]. Chemical Society Reviews, 2012, 41(24): 8179-8194. doi: 10.1039/c2cs35371g
[18] MISTRY H, BEHAFARID F, BARE SR, et al. Pressure-dependent effect of hydrogen adsorption on structural and electronic properties of Pt/gamma-Al2O3 nanoparticles [J]. Chemcatchem, 2014, 6(1): 348-352. doi: 10.1002/cctc.201300783
[19] DONG C Y, LI Y L, CHENG D Y, et al. Supported metal clusters: Fabrication and application in heterogeneous catalysis [J]. ACS Catalysis, 2020, 10(19): 11011-11045. doi: 10.1021/acscatal.0c02818
[20] PUSHKAREV VV, AN K, ALAYOGLU S, et al. Hydrogenation of benzene and toluene over size controlled Pt/SBA-15 catalysts: Elucidation of the Pt particle size effect on reaction kinetics [J]. Journal of Catalysis, 2012, 292: 64-72. doi: 10.1016/j.jcat.2012.04.022
[21] PARASTAEV A, MURAVEV V, OSTA EH, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts [J]. Nature Catalysis, 2020, 3(6): 526-533. doi: 10.1038/s41929-020-0459-4
[22] YANG H Q, YAO X, WANG X J, et al. Sol−Gel preparation and photoluminescence of size controlled germanium nanoparticles embedded in a SiO2 matrix [J]. The Journal of Physical Chemistry B, 2003, 107(48): 13319-13322. doi: 10.1021/jp035291n
[23] ESKANDARI S, TATE G, LEAPHART N R, et al. Nanoparticle synthesis via electrostatic adsorption using incipient wetness impregnation [J]. ACS Catalysis, 2018, 8(11): 10383-10391. doi: 10.1021/acscatal.8b03435
[24] LEE H, HABAS S E, KWESKIN S, et al. Morphological control of catalytically active platinum nanocrystals [J]. Angewandte Chemie (International Ed. in English), 2006, 45(46): 7824-7828. doi: 10.1002/anie.200603068
[25] BRATLIE K M, LEE H, KOMVOPOULOS K, et al. Platinum nanoparticle shape effects on benzene hydrogenation selectivity [J]. Nano Letters, 2007, 7(10): 3097-3101. doi: 10.1021/nl0716000
[26] CHEONG S, WATT JD, TILLEY RD. Shape control of platinum and palladium nanoparticles for catalysis [J]. Nanoscale, 2010, 2(10): 2045-2053. doi: 10.1039/c0nr00276c
[27] 李贵贤, 李强, 曾晓亮, 等. 微乳法制备纳米Ru/NaY催化剂及其催化对苯二酚加氢 [J]. 分子催化, 2017, 31(4): 316-324. LI G X, LI Q, ZENG X L, et al. Preparation of Ru/NaY nanoparticle catalysts by microemulsion method for catalytic hydrogenation of hydroquinone [J]. Journal of Molecular Catalysis (China), 2017, 31(4): 316-324(in Chinese).
[28] AHMAD T, CHOPRA R, RAMANUJACHARY K V, et al. Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route [J]. Solid State Sciences, 2005, 7(7): 891-895. doi: 10.1016/j.solidstatesciences.2004.11.029
[29] 白玉霞, 吴建军, 邱新平, 等. 反胶束法制备直接甲醇燃料电池Pt-Sn/C催化剂及其表征 [J]. 化学学报, 2006, 64(6): 527-531. doi: 10.3321/j.issn:0567-7351.2006.06.013 BAI Y X, WU J J, QIU X P, et al. Preparation and performance of carbon supported platinum-tin catalyst for direct methanol fuel cell by reverse micelle method [J]. Acta Chimica Sinica, 2006, 64(6): 527-531(in Chinese). doi: 10.3321/j.issn:0567-7351.2006.06.013
[30] SARGAZI G, AFZALI D, MOSTAFAVI A. A novel synthesis of a new thorium (IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method [J]. Ultrasonics Sonochemistry, 2018, 41: 234-251. doi: 10.1016/j.ultsonch.2017.09.046
[31] ZHANG S, CONSOLI DF, SHAIKH SK, et al. Effects of WO3 nanoparticle size on ethylene-butene metathesis activity [J]. Applied Catalysis A-General, 2019, 580: 53-58. doi: 10.1016/j.apcata.2019.04.019
[32] KHANI AH, RASHIDI AM, KASHI G. Synthesis of tungsten nanoparticles by reverse micelle method [J]. Journal of Molecular Liquids, 2017, 241: 897-903. doi: 10.1016/j.molliq.2017.06.053
[33] SAEKI D, KAWADA S, MATSUYAMA H. Preparation of carboxylated silver nanoparticles via a reverse micelle method and covalent stacking onto porous substrates via amide bond formation [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2018, 552: 98-102.
[34] BOUVY C, MARINE W, SU B-L. ZnO/mesoporous silica nanocomposites prepared by the reverse micelle and the colloidal methods: Photoluminescent properties and quantum size effect [J]. Chemical Physics Letters, 2007, 438(1-3): 67-71. doi: 10.1016/j.cplett.2007.02.061
[35] JAYAKUMAR OD, GOPALAKRISHNAN IK, KADAM RM, et al. Magnetization and structural studies of Mn doped ZnO nanoparticles: Prepared by reverse micelle method [J]. Journal of Crystal Growth, 2007, 300(2): 358-363. doi: 10.1016/j.jcrysgro.2006.12.030
[36] CHANDRADASS J, KIM KH. Size-controlled synthesis of LaAlO3 by reverse micelle method: Investigation of the effect of water-to-surfactant ratio on the particle size [J]. Journal of Crystal Growth, 2009, 311(14): 3631-3635. doi: 10.1016/j.jcrysgro.2009.06.012
[37] AHMED J, BLAKELY CK, BRUNO SR, et al. Synthesis of MSnO3 (M = Ba, Sr) nanoparticles by reverse micelle method and particle size distribution analysis by whole powder pattern modeling [J]. Materials Research Bulletin, 2012, 47(9): 2282-2287. doi: 10.1016/j.materresbull.2012.05.044
[38] YUASA M, MASAKI T, KIDA T, et al. Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor [J]. Sensors and Actuators, B: Chemical, 2009, 136(1): 99-104. doi: 10.1016/j.snb.2008.11.022
[39] ZHANG J, SUN LD, LIAO CS, et al. Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method [J]. Solid State Communications, 2002, 124(1-2): 45-48. doi: 10.1016/S0038-1098(02)00448-9
[40] MURUGADOSS G. Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method [J]. Journal of Luminescence, 2011, 131(10): 2216-2223. doi: 10.1016/j.jlumin.2011.03.048
[41] WANG L, WANG R, FENG L, et al. Coupling TiO2 nanorods with g-CN using modified physical vapor deposition for efficient photoelectrochemical water oxidation [J]. Journal of the American Ceramic Society, 2020, 103(11): 6272-6279. doi: 10.1111/jace.17335
[42] 刘明明, 李棚, 宋玉敏. 物理气相沉积法制备Alq3纳米结构及其性能研究 [J]. 黑河学院学报, 2019, 10(5): 218-220. doi: 10.3969/j.issn.1674-9499.2019.05.083 LIU M M, LI P, SONG Y M. On preparation of Alq3 nanostructures by physical vapor deposition and their properties [J]. Heihe Xueyuan Xuebao, 2019, 10(5): 218-220(in Chinese). doi: 10.3969/j.issn.1674-9499.2019.05.083
[43] LIU F, ZHANG L, DONG Q, et al. Synthesis and characterization of small size gold-graphitic nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. doi: 10.3866/PKU.WHXB201805037
[44] LUKOWSKI M A, DANIEL A S, MENG F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets [J]. Journal of the American Chemical Society, 2013, 135(28): 10274-10277. doi: 10.1021/ja404523s
[45] NANDIYANTO ABD, OKUYAMA K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges [J]. Advanced Powder Technology, 2011, 22(1): 1-19. doi: 10.1016/j.apt.2010.09.011
[46] ARUTANTI O, OGI T, NANDIYANTO ABD, et al. Controllable crystallite and particle sizes of WO3 particles prepared by a spray-pyrolysis method and their photocatalytic activity [J]. Aiche Journal, 2014, 60(1): 41-49. doi: 10.1002/aic.14233
[47] NANDIYANTO ABD, ISKANDAR F, OKUYAMA K. Macroporous anatase titania particle: Aerosol self-assembly fabrication with photocatalytic performance [J]. Chemical Engineering Journal, 2009, 152(1): 293-296. doi: 10.1016/j.cej.2009.04.065
[48] ROLDAN CUENYA B, BEHAFARID F. Nanocatalysis: Size- and shape-dependent chemisorption and catalytic reactivity [J]. Surface Science Reports, 2015, 70(2): 135-187. doi: 10.1016/j.surfrep.2015.01.001
[49] QIN D, XIA YN, XU B, et al. Fabrication of ordered two-dimensional arrays of micro- and nanoparticles using patterned self-assembled monolayers as templates [J]. Advanced Materials, 1999, 11(17): 1433-1437. doi: 10.1002/(SICI)1521-4095(199912)11:17<1433::AID-ADMA1433>3.0.CO;2-P
[50] SUN W X, WU S P, LU Y W, et al. Effective control of particle size and electron density of Pd/C and Sn-Pd/C nanocatalysts for vanillin production via base-free oxidation [J]. ACS Catalysis, 2020, 10(14): 7699-7709. doi: 10.1021/acscatal.0c01849
[51] KON K, SIDDIKI SMAH, SHIMIZU K-I. Size- and support-dependent Pt nanocluster catalysis for oxidant-free dehydrogenation of alcohols [J]. Journal of Catalysis, 2013, 304: 63-71. doi: 10.1016/j.jcat.2013.04.003
[52] LI Y, ZAERA F. Sensitivity of the glycerol oxidation reaction to the size and shape of the platinum nanoparticles in Pt/SiO2 catalysts [J]. Journal of Catalysis, 2015, 326: 116-126. doi: 10.1016/j.jcat.2015.04.009
[53] 庞洪强, 隋志军, 朱贻安, 等. 不同粒径Pd/Al2O3催化乙炔加氢反应微观动力学分析 [J]. 化工学报, 2016, 67(9): 3692-3698. PANG H Q, SUI Z J, ZHU Y A, et al. Microkinetics analysis of acetylene hydrogenation over Pd/Al2O3 catalyst with different particle sizes [J]. CIESC Journal, 2016, 67(9): 3692-3698(in Chinese).
[54] LIU H H, WANG Y, JIA A P, et al. Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt-CeO2 interface [J]. Applied Surface Science, 2014, 314: 725-734. doi: 10.1016/j.apsusc.2014.06.196
[55] 夏海岸, 安佳欢, 张维梓, 等. 金属-载体相互作用对负载Ag纳米颗粒催化氧化HMF性能的影响 [J]. 林业工程学报, 2020(6): 88-93. XIA H A, AN J H, ZHANG W Z, et al. Effect of the metal-support interaction on catalytic oxidation performances of HMF on Ag nanoparticles [J]. Journal of Forestry Engineering, 2020(6): 88-93(in Chinese).
[56] YI N, SI R, SALTSBURG H, et al. Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions [J]. Energy & Environmental Science, 2010, 3(6): 831-837.
[57] FLORES-CAMACHO JM, FISCHER-WOLFARTH JH, PETER M, et al. Adsorption energetics of CO on supported Pd nanoparticles as a function of particle size by single crystal microcalorimetry [J]. Physical Chemistry Chemical Physics, 2011, 13(37): 16800-16810. doi: 10.1039/c1cp21677e
[58] VAN DEN REIJEN JE, KANUNGO S, WELLING TAJ, et al. Preparation and particle size effects of Ag/alpha-Al2O3 catalysts for ethylene epoxidation [J]. Journal of Catalysis, 2017, 356: 65-74. doi: 10.1016/j.jcat.2017.10.001
[59] LIU C H, LIN C Y, CHEN J L, et al. SBA-15-supported Pd catalysts: The effect of pretreatment conditions on particle size and its application to benzyl alcohol oxidation [J]. Journal of Catalysis, 2017, 350: 21-29. doi: 10.1016/j.jcat.2017.01.019
[60] CAI J, JIANG F, LIU X. Exploring pretreatment effects in Co/SiO2 fischer-tropsch catalysts: Different oxidizing gases applied to oxidation-reduction process [J]. Applied Catalysis B: Environmental, 2017, 210: 1-13. doi: 10.1016/j.apcatb.2017.03.036
[61] AHMADI M, BEHAFARID F, CUENYA B R. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles [J]. Nanoscale, 2016, 8(22): 11635-11641. doi: 10.1039/C6NR02166B
[62] DING J, CHEN J, RUI Z, et al. Synchronous pore structure and surface hydroxyl groups amelioration as an efficient route for promoting HCHO oxidation over Pt/ZSM-5 [J]. Catalysis Today, 2018, 316: 107-113. doi: 10.1016/j.cattod.2018.01.031
[63] HENRY CR. Surface studies of supported model catalysts [J]. Surface Science Reports, 1998, 31(7-8): 235-325.
[64] CHEN Y, LIN J, LI L, et al. Local structure of Pt species dictates remarkable performance on Pt/Al2O3 for preferential oxidation of CO in H2 [J]. Appl. Catal. B-Environ, 2021, 282: 119588. doi: 10.1016/j.apcatb.2020.119588
[65] LEE C, JEON Y, KIM T, et al. Ag-loaded cerium-zirconium solid solution oxide nano-fibrous webs and their catalytic activity for soot and CO oxidation [J]. Fuel, 2018, 212(jana15): 395-404.
[66] ZHANG X, SU L, KONG Y, et al. CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity [J]. Journal of Physics and Chemistry of Solids, 2020, 147: 109651. doi: 10.1016/j.jpcs.2020.109651
[67] JIANG Y N, LIU B D, YANG L N, et al. Size-controllable Ni5TiO7 nanowires as promising catalysts for CO oxidation [J]. Scientific Reports, 2015, 5: 14330. doi: 10.1038/srep14330
[68] QI Y, LUAN Y, YU J, et al. Nanoscaled copper metal-organic framework (MOF) based on carboxylate ligands as an efficient heterogeneous catalyst for aerobic epoxidation of olefins and oxidation of benzylic and allylic alcohols [J]. Chemistry-a European Journal, 2015, 21(4): 1589-1597. doi: 10.1002/chem.201405685
[69] STUCCHI M, GALLI F, BIANCHI CL, et al. Simultaneous photodegradation of VOC mixture by TiO2 powders [J]. Chemosphere, 2018, 193: 198-206. doi: 10.1016/j.chemosphere.2017.11.003
[70] SHUTILOV RA, SHUTILOV AA, ZENKOVETS GA. Nanocrystalline V2O5, WO3/(CeO2-TiO2) and V2O5, WO3/(Y2O3-TiO2) catalysts with enhance thermal stability and activity in the reduction of NO with NH3 into N2 [J]. Materials Today-Proceedings, 2017, 4(11): 11490-11494. doi: 10.1016/j.matpr.2017.09.035
[71] YAO X, LI L, ZOU W, et al. Preparation, characterization, and catalytic performance of high efficient CeO2-MnOx-Al2O3 catalysts for NO elimination [J]. Chinese Journal of Catalysis, 2016, 37(8): 1369-1380. doi: 10.1016/S1872-2067(15)61098-1
[72] CHEN L, LIAO Y, XIN S, et al. Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas [J]. Fuel, 2020, 262: 116485. doi: 10.1016/j.fuel.2019.116485
[73] ZHAO Y, YUAN B, ZHENG Z H, et al. Removal of multi-pollutant from flue gas utilizing ammonium persulfate solution catalyzed by Fe/ZSM-5 [J]. Journal of Hazardous Materials, 2019, 362: 266-274. doi: 10.1016/j.jhazmat.2018.08.071