[1] GUO J, LIU Y, HAO Y, LI Y, et al. Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts [J]. Applied Catalysis B: Environmental, 2018, 224: 841-853. doi: 10.1016/j.apcatb.2017.11.046
[2] NASERI A, SAMADI M, POURJAVADI A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions [J]. Journal of Materials Chemistry A, 2017, 5: 23406-23433. doi: 10.1039/C7TA05131J
[3] GAO Y, WANG L, ZHOU A, et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity [J]. Materials Letters, 2015, 150: 62-64. doi: 10.1016/j.matlet.2015.02.135
[4] ZHOU W, YIN Z, DU Y, et al. Synthesis of few-layer MoS2 Nanosheet-Coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities [J]. Small, 2013, 9: 140-147. doi: 10.1002/smll.201201161
[5] WU J M, CHANG W E, CHANG Y T, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers [J]. Adv Mater, 2016, 28: 3718-3725. doi: 10.1002/adma.201505785
[6] SAHARA G, KUMAGAI H, MAEDA K, et al. Photoelectrochemical Reduction of CO2 coupled to water oxidation using a photocathode with a Ru(Ⅱ)-Re(Ⅰ) complex photocatalyst and a CoOx/TaON photoanode [J]. J Am Chem Soc, 2016, 138: 14152-14158. doi: 10.1021/jacs.6b09212
[7] MAO X, XIE F, LI M. Facile hydrolysis synthesis of novel Bi4O5Br2 photocatalyst with enhanced visible light photocatalytic activity for the degradation of resorcinol [J]. Materials Letters, 2016, 166: 296-299. doi: 10.1016/j.matlet.2015.12.090
[8] PENG C, YANG X, LI Y, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity [J]. ACS Appl Mater Interfaces, 2016, 8: 6051-6060. doi: 10.1021/acsami.5b11973
[9] REHMAN A, KHAN M F, SHEHZAD M A, et al. n-MoS2/p-Si solar cells with al2o3 passivation for enhanced photogeneration [J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29383-29390.
[10] TIWARI A P, YOO H, LEE J, et al. Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries [J]. Nanoscale, 2015, 7: 11928-11933. doi: 10.1039/C5NR03111G
[11] WANG Z, CHEN Q, WANG J. Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2 [J]. The Journal of Physical Chemistry C, 2015, 119: 4752-4758. doi: 10.1021/jp507751p
[12] ZHANG X, HUANG X, XUE M, et al. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres [J]. Materials Letters, 2015, 148: 67-70. doi: 10.1016/j.matlet.2015.02.027
[13] LIN T, WANG J, GUO L, et al. Fe3O4@MoS2 core–shell composites: preparation, characterization, and catalytic application [J]. The Journal of Physical Chemistry C, 2015, 119: 13658-13664. doi: 10.1021/acs.jpcc.5b02516
[14] LIU D, YAO W, WANG J, et al. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst [J]. Applied Catalysis B: Environmental, 2015, 172-173: 100-107. doi: 10.1016/j.apcatb.2015.01.037
[15] ZHANG H, ZHANG Y N, LIU H, et al. Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion [J]. J. Mater. Chem. A, 2014, 2: 15389-15395. doi: 10.1039/C4TA03134B
[16] ZHENG W, FENG W, ZHANG X, et al. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures [J]. Advanced Functional Materials, 2016, 26(16): 2648-2654.
[17] ZHENG M, GUO R, LIU Z, et al. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries [J]. Journal of Alloys and Compounds, 2018, 735: 1262-1270. doi: 10.1016/j.jallcom.2017.11.250
[18] WU J, CHANG W, CHANG Y, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers [J]. Advanced Materials, 2016, 28(19): 3718-3725.
[19] CAI T, WANG L, LIU Y, et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance[J]. Applied Catalysis B: Environmental, 2018, 239: 545-554.
[20] RUSSO M, PAROLA L V, TESTA M L, et al. Structural insight in TiO2 supported CoFe catalysts for Fischer–Tropsch synthesis at ambient pressure [J]. Applied Catalysis A: General 2020, 1176: 21.
[21] RABÉ K, LIU L, NAHYOON N A, et al. Enhanced Rhodamine B and coking wastewater degradation and simultaneous electricity generation via anodic g-C3N4/Fe0(1%)/TiO2 and cathodic WO3 in photocatalytic fuel cell system under visible light irradiation [J]. Electrochimica Acta, 2019, 298: 430-439. doi: 10.1016/j.electacta.2018.12.121
[22] PAUL K K, SREEKANTH N, BIROJU R K, et al. Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2(B) nanobelts heterostructure [J]. Solar Energy Materials and Solar Cells, 2018, 185: 364-374. doi: 10.1016/j.solmat.2018.05.056