[1] 滕彦国, 左锐, 王金生, 等. 区域地下水演化的地球化学研究进展 [J]. 水科学进展, 2010, 21(1): 127-136. TENG Y G, ZUO R, WANG J S, et al. Progress in geochemistry of regional groundwater evolution [J]. Advances in Water Science, 2010, 21(1): 127-136(in Chinese).
[2] RADLOFF K A, ZHENG Y, MICHAEL H A, et al. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand [J]. Nature Geoscience, 2011, 4(11): 793-798. doi: 10.1038/ngeo1283
[3] CHRISTOFI C, BRUGGEMAN A, KUELL C, et al. Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach [J]. Applied Geochemistry, 2020, 114: 104524-104543.
[4] SAVAGE K S, ASHLEY R P, BIRD D K. Geochemical Evolution of a High Arsenic, Alkaline Pit-Lake in the Mother Lode Gold District, California [J]. Economic Geology, 2009, 104(8): 1171-1211. doi: 10.2113/gsecongeo.104.8.1171
[5] 李义连, 王焰新, 周来茹, 等. 地下水矿物饱和度的水文地球化学模拟分析-以娘子关泉域岩溶水为例 [J]. 地质科技情报, 2002, 21(1): 32-36. doi: 10.3969/j.issn.1000-7849.2002.01.008 LI Y L, WANG Y X, ZHOU R L, et al. Hydrogeochemical modeling on saturation of minerals in groundwater: a case study at Niangziguan, Northern China [J]. Geological Science and Technology Information, 2002, 21(1): 32-36(in Chinese). doi: 10.3969/j.issn.1000-7849.2002.01.008
[6] 李常锁, 武显仓, 孙斌, 等. 济南北部地热水水化学特征及其形成机理 [J]. 地球科学, 2018, 43(S1): 313-325. LI C S, WU X C, SUN B, et al. Hydrochemical characteristics and formation mechanism of geothermal water in northern Ji’nan [J]. Earth Science, 2018, 43(S1): 313-325(in Chinese).
[7] 纪媛媛, 李巧, 周金龙. 新疆喀什地区地下水质量与污染评价 [J]. 节水灌溉, 2014(1): 50-53, 56. doi: 10.3969/j.issn.1007-4929.2014.01.014 JI Y Y, LI Q, ZHOU J L. Assessment of groundwater quality and pollution in Kashgar region of Xinjiang [J]. Water Saving Irrigation, 2014(1): 50-53, 56(in Chinese). doi: 10.3969/j.issn.1007-4929.2014.01.014
[8] 魏兴, 周金龙, 贾瑞亮, 等. 喀什地区不同TDS浅层地下水分布及资源量估算 [J]. 节水灌溉, 2017(9): 51-54. doi: 10.3969/j.issn.1007-4929.2017.09.012 WEI X, ZHOU J L, JIA R L, et al. Distribution and resource estimation of shallow groundwater with different TDS in Kashgar region of Xinjiang [J]. Water Saving Irrigation, 2017(9): 51-54(in Chinese). doi: 10.3969/j.issn.1007-4929.2017.09.012
[9] 郎新文. 喀什地区2012-2015年地下水变化动态分析 [J]. 地下水, 2019, 44(4): 46-48. doi: 10.3969/j.issn.1004-1184.2019.04.017 LANG X W. Dynamic analysis of groundwater changes in Kashi area from 2012 to 2015 [J]. Groundwater, 2019, 44(4): 46-48(in Chinese). doi: 10.3969/j.issn.1004-1184.2019.04.017
[10] 热汗古丽·吾买尔, 满苏尔·沙比提, 陆吐布拉·依明. 喀什地区近10年地下水资源时空动态变化分析 [J]. 干旱区资源与环境, 2011, 25(7): 63-68. REYANGUL U, MANSUR S, LOTPULLA E. Spatial dynamic changes of ground water resources in Kashghar prefecture during recent 10 years [J]. Journal of Arid Land Resources and Environment, 2011, 25(7): 63-68(in Chinese).
[11] 孙英. 新疆喀什地区西部地下水“三氮”空间分布特征及影响因素[C]. 北京: 中国环境科学学会, 2019. SUN Y. Spatial distribution and influencing factors of “Three-Nitrogen” in groundwater of the western area of Kashgar, Xinjiang[C]. Beijing: Chinese Society for Environmental Sciences, 2019(in Chinese).
[12] 魏兴, 周金龙, 曾妍妍, 等. 喀什地区西部地下水重金属空间分布特征及成因分析 [J]. 环境化学, 2017, 36(8): 1802-1811. doi: 10.7524/j.issn.0254-6108.2016120802 WEI X, ZHOU J L, ZENG Y Y, et al. Spatial distribution and orign of heavy metals in groundwater in the western Kashgar Prefecture [J]. Environmental Chemistry, 2017, 36(8): 1802-1811(in Chinese). doi: 10.7524/j.issn.0254-6108.2016120802
[13] 栾凤娇, 周金龙, 曾妍妍, 等. 新疆南部典型地区地下水中氟的分布特征及其富集因素分析 [J]. 环境化学, 2016, 35(6): 1203-1211. doi: 10.7524/j.issn.0254-6108.2016.06.2015102703 LUAN F J, ZHOU J L, ZENG Y Y, et al. Distribution characteristics and enrichment factors of fluorine in groundwater in typical areas of southern Xinjiang [J]. Environmental Chemistry, 2016, 35(6): 1203-1211(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015102703
[14] 曾妍妍, 周殷竹, 周金龙, 等. 新疆喀什地区西部地下水质量现状评价 [J]. 新疆农业大学学报, 2016, 39(2): 167-172. doi: 10.3969/j.issn.1007-8614.2016.02.015 ZENG Y Y, ZHOU Y Z, ZHOU J L, et al. Assessment of groundwater quality statusin western Kashgar, Xinjiang [J]. Journal of Xinjiang Agricultural University, 2016, 39(2): 167-172(in Chinese). doi: 10.3969/j.issn.1007-8614.2016.02.015
[15] 孙英, 周金龙, 乃尉华, 等. 新疆喀什噶尔河流域地表水水化学季节变化特征及成因分析 [J]. 干旱区资源与环境, 2019, 33(8): 128-134. SUN Y, ZHOU J L, NAI W H, et al. Seasonal variation characteristics and causes of surface water chemistry in Kashgar River Basin, Xinjiang [J]. Journal of Arid Land Resources and Environment, 2019, 33(8): 128-134(in Chinese).
[16] 陈小兵, 周宏飞, 张学仁, 等. 新疆喀什噶尔冲积平原区地下水水化学特征[J]. 干旱区地理, 2004(1): 75-79. ZHU H, ZHOU H F, CHEN X B, et al. Analysis on the characteristics of groundwater resources in Kashgar Prefecture, Xinjiang[J]. Arid Zone Research, 2005, 22(2): 152-156(in Chinese).
[17] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征及演化规律 [J]. 环境科学, 2019, 40(9): 4042-4051. WEI X, ZHOU J L, NAI W H, et al. Hydrochemical characteristics and evolution of groundwater in the Kashgar Delta Area in Xinjiang [J]. Environmental Science, 2019, 40(9): 4042-4051(in Chinese).
[18] 国家环境保护总局. HJ/T164—2004, 地下水环境监测技术规范[S]. 北京: 中国环境科学出版社, 2004. State Environmental Protection Administration. HJ/T164—2004, Groundwater environmental monitoring technical specifications[S]. Beijing: China Environmental Science Press, 2004(in Chinese).
[19] 乃尉华, 常志勇, 陆成新, 等. 新疆喀什经济开发区水文地质环境地质调查评价[M]. 北京: 地质出版社, 2017. NAI W H, CHANG Z Y, LU C X, et al. Investigation and evaluation of hydrogeological environment and geology in economic development zone of Xinjiang Kashgar[M]. Beijing: Geological Publishing House, 2017(in Chinese).
[20] 乃尉华, 常志勇, 李斌, 等. 新疆喀什三角洲1: 10万水文地质环境地质调查报告[R]. 新疆维吾尔自治区地质矿产勘查开发局第二水文工程地 质大队, 2018. NAI W H, CHANG Z Y, LI B, et al. 1: 100, 000 hydrogeological environment geological survey report in Kashi Delta of Xinjiang[R]. Xinjiang Uygur Autonomous Region Geological and Mineral Exploration and Development Bureau Second Hydrological Engineering Geology Brigade, 2018(in Chinese).
[21] 乃尉华, 史杰, 王文科, 等. 喀什平原区地下水同位素年龄特征及更新速率分析 [J]. 新疆地质, 2018, 36(3): 406-409. doi: 10.3969/j.issn.1000-8845.2018.03.021 NAI W H, SHI J, WANG W K, et al. Isotopic age characteristics and renewal rate of groundwater in Kashgar Plain [J]. Xinjiang Geology, 2018, 36(3): 406-409(in Chinese). doi: 10.3969/j.issn.1000-8845.2018.03.021
[22] LIPSON D S, MCCRAY J E, THYNE G D. Using PHREEQC to simulate solute transport in fractured bedrock [J]. Groundwater, 2007, 45(4): 468-472. doi: 10.1111/j.1745-6584.2007.00318.x
[23] 周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素 [J]. 环境科学, 2014, 35(9): 3315-3324. ZHOU J X, DING Y J, ZENG G X, et al. Major Ion chemistry of surface water in the upper reach of Shule River Basin and the possible controls [J]. Environmental Science, 2014, 35(9): 3315-3324(in Chinese).
[24] 张涛, 何锦, 李敬杰, 等. 蛤蟆通河流域地下水化学特征及控制因素 [J]. 环境科学, 2018, 39(11): 4981-4990. ZHANG T, HE J, LI J J, et al. Major ionic features and possible controls in the groundwater in the Hamatong River Basin [J]. Environmental Science, 2018, 39(11): 4981-4990(in Chinese).
[25] HE J H, MA J Z, ZHANG P, et al. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China [J]. Applied Geochemistry, 2012, 27(4): 866-878. doi: 10.1016/j.apgeochem.2012.01.014
[26] 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水SO42-化学特征及来源 [J]. 环境科学, 2019, 40(8): 3550-3558. WEI X, ZHOU J L, NAI W H, et al. Chemical characteristics and sources of groundwater sulfate in the Kashgar Delta, Xinjiang [J]. Environmental Science, 2019, 40(8): 3550-3558(in Chinese).
[27] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs Diagram [J]. Applied Geochemistry, 2018, 97: 209-212. doi: 10.1016/j.apgeochem.2018.07.009
[28] XIAO J, JIN Z D, ZHANG F, et al. Solute geochemistry and its sources of the groundwaters in the Qinghai Lake catchment, NW China [J]. Journal of Asian Earth Sciences, 2012, 52: 21-30. doi: 10.1016/j.jseaes.2012.02.006
[29] 赵辉. 三江平原蛤蟆通河流域地下水补、径、排特征及水化学演化规律[D]. 长春: 吉林大学, 2017. ZHAO H. Groundwater recharge, discharge, runoff characteristics and hydrochemical evolution of hamatong river basin in Sanjiang Plain[D]. Changchun: Jilin University, 2017(in Chinese).
[30] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素 [J]. 环境科学, 2017, 38(11): 4537-4545. ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the Niyang River Basin [J]. Environmental Science, 2017, 38(11): 4537-4545(in Chinese).
[31] XIAO J, JIN Z D, ZHANG F. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau [J]. Quaternary International, 2015, 380-381(5): 237-246.
[32] REDWAN M, ABDEL M. Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt [J]. Journal of African Earth Sciences, 2016, 118: 328-338. doi: 10.1016/j.jafrearsci.2015.10.002
[33] 李霄, 林学钰, 都基众, 等. 齐齐哈尔市潜水水化学演化规律分析 [J]. 水利学报, 2014, 45(7): 815-827. LI X, LIN X Y, DU J Z, et al. Analysis of hydrochemical evolution of phreatic water in Qiqihar City [J]. Journal of Hydraulic Engineering, 2014, 45(7): 815-827(in Chinese).