[1] |
SONG F, WU F, FENG W, et al. Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions [J]. Journal of Environmental Sciences, 2018, 74: 116-125. doi: 10.1016/j.jes.2018.02.015
|
[2] |
SEPP M, KOIV T, NOGES P, et al. Do organic matter metrics included in lake surveillance monitoring in europe provide a broad picture of brownification and enrichment with oxygen consuming substances? [J]. Science of The Total Environment , 2018, 610-611: 1288-1297.
|
[3] |
WEIWEI L, XIN Y, KEQIANG S, et al. Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in lake Taihu, China [J]. Environmental Science and Pollution Research, 2019, 26(4): 4027-4040. doi: 10.1007/s11356-018-3873-2
|
[4] |
沈烁, 王育来, 杨长明, 等. 南淝河不同排口表层沉积物DOM光谱特征 [J]. 中国环境科学, 2014, 34(9): 2351-2361.
SHEN S, WANG Y L, YANG C M, et al. Spectral characteristic of dissolved organic matter (DOM) in the surface sediments from different discharging points along the nanfei river in hefei city, anhui province [J]. China Environmental Science, 2014, 34(9): 2351-2361(in Chinese).
|
[5] |
MASSICOTTE P, ASMALA E, STEDMON C, et al. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans [J]. Sci Total Environ, 2017, 609: 180-191. doi: 10.1016/j.scitotenv.2017.07.076
|
[6] |
田大年, 党丽慧, 丁润梅, 等. 银川市湿地表层水中多环芳烃的分布、来源及生态风险评价 [J]. 环境科学, 2019, 40(7): 3068-3077.
TIAN D N, DANG L H, DING R M, et al. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the surface waters of the yinchuan wetlands [J]. Environmental Science, 2019, 40(7): 3068-3077(in Chinese).
|
[7] |
何彤慧, 王筱平, 高鹏. 银川平原湿地开发利用的历史经验 [J]. 宁夏农林科技, 2018, 59(7): 29-32, 43. doi: 10.3969/j.issn.1002-204x.2018.07.012
HE T H, WANG X P, GAO P. His torical experience of wetland development and utilization in yinchuan plain [J]. Ningxia Journal of Agri and Fores, 2018, 59(7): 29-32, 43(in Chinese). doi: 10.3969/j.issn.1002-204x.2018.07.012
|
[8] |
谭鹏. 银川湿地保护与水资源可持续利用概述 [J]. 宁夏农林科技, 2016, 57(1): 51-52, 62. doi: 10.3969/j.issn.1002-204X.2016.01.020
TAN P. An overview of wetland protection and water resources sustainable utilization in Yinchuan [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2016, 57(1): 51-52, 62(in Chinese). doi: 10.3969/j.issn.1002-204X.2016.01.020
|
[9] |
JASON B. FELLMAN, ERAN H, et al FELLMAN, ERAN H, et al. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review [J]. American Society of Limnology and Oceanography, 2010, 55(6): 2452-2462. doi: 10.4319/lo.2010.55.6.2452
|
[10] |
周石磊, 孙悦, 张艺冉, 等. 雄安新区-白洋淀冬季冰封期水体溶解性有机物的空间分布、光谱特征及来源解析 [J]. 环境科学, 2020, 41(1): 213-223.
ZHOU S L, SUN Y, ZHANG Y R, et al. Spatial distribution, spectral characteristics, and sources analysis of dissolved organic matter from baiyangdian Lake in Xiong’an New District during the winter freezing period [J]. Environmental Science, 2020, 41(1): 213-223(in Chinese).
|
[11] |
YAO Y, LI Y Z, GUO X J, et al. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy [J]. Environ Sci Pollut Res Int, 2016, 23(12): 12237-12245. doi: 10.1007/s11356-016-6435-5
|
[12] |
MURPHY K R, TIMKO S A, GONSIOR M, et al. Photochemistry illuminates ubiquitous organic matter fluorescence spectra [J]. Environ Sci Technol, 2018, 52(19): 11243-11250. doi: 10.1021/acs.est.8b02648
|
[13] |
SANCHEZ N P, SKERIOTIS A T, MILLER C M. A PARAFAC-based long-term assessment of DOM in a multi-coagulant drinking water treatment scheme [J]. Environ Sci Technol, 2014, 48(3): 1582-1591. doi: 10.1021/es4049384
|
[14] |
BRIDGEMAN J, BIEROZA M, B, AKER A. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment [J]. Reviews in Environmental Science and Bio/Technology, 2011, 10(3): 277-290. doi: 10.1007/s11157-011-9243-x
|
[15] |
SINGH S, J. D'SA E, M. SWENSON E. Chromophoric dissolved organic matter (CDOM) variability in barataria basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) [J]. Science of the Total Environment, 2010, 408: 3211-3222. doi: 10.1016/j.scitotenv.2010.03.044
|
[16] |
CHEN H, LEI K, WANG X. Terrestrial humic substances in daliao river and its estuary: Optical signatures and photoreactivity to UVA light [J]. Environmental Science and Pollution Research, 2015, 23(7): 6459-6471.
|
[17] |
EHNVALL B. Organic matter properties and their relation to phosphorus and nitrogen concentrations in swedish agricultural streams[D]. Uppsala: Sveriges lantbruksuniversitet, 2017.
|
[18] |
PAINTER S C, LAPWORTH D J, WOODWARD E M S, et al. Terrestrial dissolved organic matter distribution in the north sea [J]. Sci Total Environ, 2018, 630: 630-647. doi: 10.1016/j.scitotenv.2018.02.237
|
[19] |
OSBURN C L, HANDSEL L T, MIKAN M P, et al. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary [J]. Environ Sci Technol, 2012, 46(16): 8628-8636. doi: 10.1021/es3007723
|
[20] |
WILLIAMS C J, YAMASHITA Y, WILSON H F, et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems [J]. Limnology and Oceanography, 2010, 55(3): 1159-1171. doi: 10.4319/lo.2010.55.3.1159
|
[21] |
LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (the Meuse River, Belgium) [J]. Biogeochemistry, 2017, 136(2): 191-211. doi: 10.1007/s10533-017-0387-9
|
[22] |
CHEN M, JUNG J, LEE Y K, et al. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the chukchi sea of the arctic ocean [J]. Sci Total Environ, 2018, 639: 624-632. doi: 10.1016/j.scitotenv.2018.05.205
|
[23] |
CHEN M, KIM S H, JUNG H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications [J]. Water Res, 2017, 121: 150-161. doi: 10.1016/j.watres.2017.05.022
|
[24] |
CATALA T S, RECHE I, FUENTES-LEMA A, et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean [J]. Nat Commun, 2015, 6: 5986-5994. doi: 10.1038/ncomms6986
|
[25] |
SøNDERGAARD M, STEDMON C A, BORCH N H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability [J]. Ophelia, 2003, 57(3): 161-176. doi: 10.1080/00785236.2003.10409512
|
[26] |
ZHU W Z, YANG G P, ZHANG H H. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters [J]. Sci Total Environ, 2017, 607-608: 214-224. doi: 10.1016/j.scitotenv.2017.06.163
|
[27] |
CAWLEY K M, BUTLER K D, AIKEN G R, et al. Identifying fluorescent pulp mill effluent in the gulf of maine and its watershed [J]. Mar Pollut Bull, 2012, 64(8): 1678-1687. doi: 10.1016/j.marpolbul.2012.05.040
|
[28] |
ZHENG L, SONG Z, MENG P, et al. Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River, China [J]. Environmental Science and Pollution Research, 2015, 23(8): 7462-7469.
|
[29] |
DU Y, ZHANG Y, CHEN F, et al. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change [J]. Sci Total Environ, 2016, 568: 216-225. doi: 10.1016/j.scitotenv.2016.06.036
|
[30] |
SONG F H, WU F C, FENG W Y, et al. Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy [J]. Chemosphere, 2019, 225: 507-516. doi: 10.1016/j.chemosphere.2019.03.089
|
[31] |
GUO X J, LI Q, JIANG J Y, et al. Investigating spectral characteristics and spatial variability of dissolved organic matter leached from wetland in semi-arid region to differentiate its sources and fate [J]. Clean - Soil, Air, Water, 2014, 42(8): 1076-1082. doi: 10.1002/clen.201300412
|
[32] |
TZORTZIOU M, ZERI C, DIMITRIOU E, et al. Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland [J]. Limnol Oceanogr, 2015, 60(4): 1222-1240. doi: 10.1002/lno.10092
|
[33] |
WAGNER S, JAFFE R, CAWLEY K, et al. Associations between the molecular and optical properties of dissolved organic matter in the florida everglades, a model coastal wetland System [J]. Front Chem, 2015(3): 66-80.
|
[34] |
WANG J J, JIAO Y, RHEW R C, et al. Haloform formation in coastal wetlands along a salinity gradient at South Carolina, United States [J]. Environmental Chemistry, 2016, 13: 745-756. doi: 10.1071/EN15145
|
[35] |
CLARK C D, DE BRUYN W J, BRAHM B, et al. Optical properties of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) levels in constructed water treatment wetland systems in southern california, USA [J]. Chemosphere, 2020: 247:125906. doi: 10.1016/j.chemosphere.2020.125906
|
[36] |
BOWEN J C, CLARK C D, KELLER J K, et al. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and pore waters adjacent to an oil well in a southern california salt marsh [J]. Mar Pollut Bull, 2017, 114(1): 157-168. doi: 10.1016/j.marpolbul.2016.08.071
|