[1] BOENING D W. Ecological effects, transport, and fate of mercury: A general review [J]. Chemosphere, 2000, 40(12): 1335-13351. doi: 10.1016/S0045-6535(99)00283-0
[2] SILBERGELD E K, SILVA I A, NYLAND J F. Mercury and autoimmunity: Implications for occupational and environmental health [J]. Toxicology and Applied Pharmacology, 2005, 207(2): 282-292. doi: 10.1016/j.taap.2004.11.035
[3] WOLFE M F, SCHWARZBACH S, SULAIMAN R A. Effects of mercury on wildlife: A comprehensive review [J]. Environmental Toxicology and Chemistry, 1998, 17(2): 146-160. doi: 10.1002/etc.5620170203
[4] HARRIS H H, PICKERING I J, GEORGE G N. The chemical form of mercury in fish [J]. Science, 2003, 301(5637): 1203-1203. doi: 10.1126/science.1085941
[5] 冯新斌, 仇广乐, 付学吾, 等. 环境汞污染 [J]. 化学进展, 2009, 21(2/3): 436-457. FENG X, CHOU G, FU X, et al. Environmental mercury pollution [J]. Progress in Chemistry, 2009, 21(2/3): 436-457(in Chinese).
[6] CLARKSON T W, MAGOS L, MYERS G J. The toxicology of mercury-Current exposures and clinical manifestations [J]. The New England Journal of Medicine, 2003, 349(18): 1731-1737. doi: 10.1056/NEJMra022471
[7] TCHOUNWOU P B, AYENSU W K, NINASHVILI N, et al. Environmental exposure to mercury and its toxicopathologic implications for public health [J]. Environmental Toxicology, 2003, 18(3): 149-175. doi: 10.1002/tox.10116
[8] DIETZ C, MADRID Y, CAMARA C, et al. Simultaneous determination of As, Hg, Se and Sb by hydride generation-microwave induced plasma atomic emission spectrometry after preconcentration in a cryogenic trap [J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1349-1355. doi: 10.1039/A902039J
[9] LI Y, CHEN C, LI B, et al. Elimination efficiency of different reagents for the memory effete of mercury using ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2006, 21(1): 94-96. doi: 10.1039/B511367A
[10] KRISTIAN K E, FRIEDBAUER S, KABASHI D, et al. A simplified digestion protocol for the analysis of Hg in fish by cold vapor atomic absorption spectroscopy [J]. Journal of Chemical Education, 2015, 92(4): 698-702. doi: 10.1021/ed500687b
[11] CARTER K P, YOUNG A M, PALMER A E. Fluorescent sensors for measuring metal ions in living systems [J]. Chemical Reviews, 2014, 114(8): 4564-4601. doi: 10.1021/cr400546e
[12] WANG C, ZHANG D, HUANG X, et al. A ratiometric fluorescent chemosensor for Hg2+ based on FRET and its application in living cells [J]. Sensors and Actuators B: Chemical, 2014, 198: 33-40. DOI: 10.1016/j.snb.2014.03.032.
[13] RU J, TANG X, JU Z, et al. Exploitation and application of a highly sensitive Ru(II) complex-based phosphorescent chemodosimeter for Hg2+ in aqueous solutions and living cells [J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4247-4256. DOI: 10.1021/am508484q .
[14] ZHANG Y, CHEN H, CHEN D, et al. A colorimetric and ratiometric fluorescentprobe for mercury(II) in lysosome [J]. Sensors and Actuators B: Chemical, 2016, 224: 907-914.
[15] XU D, TANG L, TIAN M, et al. A benzothizole-based fluorescent probe for Hg2+recognition utilizing ESIPT coupled AIE characteristics [J]. Tetrahedron Letters, 2017, 58(37): 3654-3657. doi: 10.1016/j.tetlet.2017.08.016
[16] MA X, HU L, HAN X, et al. Vinylpyridine- and vinylnitrobenzene-coating tetraphenylethenes: Aggregation-induced emission (AIE) behavior and mechanochromic property [J]. Chinese Chemical Letters, 2018, 29(10): 1489-1492. doi: 10.1016/j.cclet.2018.06.022
[17] YUAN M, LI Y, LI J, et al. A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule [J]. Organic Letters, 2007, 9(12): 2313-2316. doi: 10.1021/ol0706399
[18] ATILGAN S, KUTUK I, OZDEMIR T. A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(II) [J]. Tetrahedron Letters, 2010, 51(6): 892-894. doi: 10.1016/j.tetlet.2009.12.025
[19] LV H, YUAN G, ZHANG G, et al. A novel benzopyran-based colorimetric and near-infrared fluorescent sensor for Hg2+ and its imaging in living cell and zebrafish [J]. Dyes and Pigments, 2020, 172: 107658-107665. DOI: 10.1016/j.dyepig.2019.107658 .