[1] 李历铨, 郑洋, 李彬, 等. 我国再生铜产业污染排放识别与绿色升级对策 [J]. 有色金属工程, 2018, 8(1): 133-138. doi: 10.3969/j.issn.2095-1744.2018.01.026 LI L Q, ZHENG Y, LI B, et al. The identification of pollution emission for China secondary copper industry and upgrading green countermeasures [J]. Nonferrous Metals Engineering, 2018, 8(1): 133-138(in Chinese). doi: 10.3969/j.issn.2095-1744.2018.01.026
[2] 温宗国, 季晓立. 中国铜资源代谢趋势及减量化措施 [J]. 清华大学学报(自然科学版), 2013, 53(9): 1283-1288. WEN Z G, JI X L. Copper resource trends and use reduction measures in China [J]. Journal of Tsinghua University (Science and Technology), 2013, 53(9): 1283-1288(in Chinese).
[3] HUNG P C, CHANG C C, CHANG S H, et al. Characteristics of PCDD/F emissions from secondary copper smelting industry [J]. Chemosphere, 2015, 118: 148-155. doi: 10.1016/j.chemosphere.2014.07.064
[4] WANG M, LIU G R, JIANG X X, et al. Brominated dioxin and furan stack gas emissions during different stages of the secondary copper smelting process [J]. Atmospheric Pollution Research, 2015, 6(3): 464-468. doi: 10.5094/APR.2015.051
[5] 邹川. 典型行业PCDD/Fs排放特征及其控制研究[D]. 广州: 华南理工大学, 2012. ZOU C. Study on emission characteristics and control of PCDD/fs from typical industries [D]. Guangzhou: South China University of Technology, 2012(in Chinese).
[6] WANG M, LIU G R, JIANG X X, et al. Thermochemical formation of polybrominated dibenzo-p-dioxins and dibenzofurans mediated by secondary copper smelter fly ash, and implications for emission reduction [J]. Environmental Science & Technology, 2016, 50(14): 7470-7479.
[7] 宋鹏程, 陆书玉, 魏永杰, 等. 上海市大气颗粒物生物毒性及二噁英呼吸暴露风险评价 [J]. 中国环境科学, 2018, 38(5): 1961-1969. doi: 10.3969/j.issn.1000-6923.2018.05.042 SONG P C, LU S Y, WEI Y J, et al. Biotoxicity effects and respiratory risk assessment of PCDD/Fs exposured to atmospheric particulates in Shanghai [J]. China Environmental Science, 2018, 38(5): 1961-1969(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.05.042
[8] 罗挺, 陈敏慧, 罗云程, 等. 二噁英暴露与6种疾病流行: 越南成年男性的健康研究 [J]. 环境化学, 2019, 38(8): 1669-1675. doi: 10.7524/j.issn.0254-6108.2018093003 LUO T, CHEN M H, LUO Y C, et al. Dioxin exposure and six kind of diseases prevalence: Vietnamese men health study [J]. Environmental Chemistry, 2019, 38(8): 1669-1675(in Chinese). doi: 10.7524/j.issn.0254-6108.2018093003
[9] 李雁, 郭昌胜, 侯嵩, 等. 固体废物焚烧过程中二噁英的排放和生成机理研究进展 [J]. 环境化学, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103 LI Y, GUO C S, HOU S, et al. The formation mechanisms and emission of dioxin during the solid waste incineration process [J]. Environmental Chemistry, 2019, 38(4): 746-759(in Chinese). doi: 10.7524/j.issn.0254-6108.2018110103
[10] NIE Z Q, LIU G R, LIU W B, et al. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China [J]. Atmospheric Environment, 2012, 57: 109-115. doi: 10.1016/j.atmosenv.2012.04.048
[11] NIE Z Q, ZHENG M H, LIU W B, et al. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China [J]. Chemosphere, 2011, 85(11): 1707-1712. doi: 10.1016/j.chemosphere.2011.09.016
[12] ZOU C, HAN J L, FU H Q. Emissions of PCDD/fs from steel and secondary nonferrous productions [J]. Procedia Environmental Sciences, 2012, 16: 279-288. doi: 10.1016/j.proenv.2012.10.039
[13] BA T, ZHENG M H, ZHANG B, et al. Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China [J]. Environmental Science & Technology, 2010, 44(7): 2441-2446.
[14] JIN R, LIU G R, ZHENG M H, et al. Secondary copper smelters as sources of chlorinated and brominated polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 2017, 51(14): 7945-7953.
[15] LEE C C, SHIH T S, CHEN H L. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters [J]. Journal of Hazardous Materials, 2009, 172(2/3): 1351-1356.
[16] KUZUHARA S, SATO H, KASAI E, et al. Influence of metallic chlorides on the formation of PCDD/fs during low-temperature oxidation of carbon [J]. Environmental Science & Technology, 2003, 37(11): 2431-2435.
[17] WANG M, LIU G R, JIANG X X, et al. Formation and potential mechanisms of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly ash from a secondary copper smelting process [J]. Environmental Science and Pollution Research, 2015, 22(11): 8747-8755. doi: 10.1007/s11356-014-4046-6
[18] 张梦玫, 李晓东, 陈彤. 氯化铜催化二噁英生成实验及指纹特性分析 [J]. 环境科学学报, 2019, 39(8): 2735-2746. ZHANG M M, LI X D, CHEN T. Copper chloride catalyzed PCDD/F-formation: Experiments and PCDD/F-signatures [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2735-2746(in Chinese).
[19] 罗阿群, 刘少光, 林文松, 等. 二噁英生成机理及减排方法研究进展 [J]. 化工进展, 2016, 35(3): 910-916. LUO A, LIU S G, LIN W S, et al. Progress of formation mechanisms and emission reduction methods of PCDD/Fs [J]. Chemical Industry and Engineering Progress, 2016, 35(3): 910-916(in Chinese).
[20] POTTER P M, GUAN X, LOMNICKI S M. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol [J]. Chemosphere, 2018, 203: 96-103. doi: 10.1016/j.chemosphere.2018.03.118
[21] WANG L C, LEE W J, LEE W S, et al. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans [J]. The Science of the Total Environment, 2003, 302(1/2/3): 185-198.
[22] ZHANG M M, YANG J, BUEKENS A, et al. PCDD/F catalysis by metal chlorides and oxides [J]. Chemosphere, 2016, 159: 536-544. doi: 10.1016/j.chemosphere.2016.06.049
[23] 张玉才, 龙红明, 春铁军, 等. 原料铜和氯元素对二(噁)英排放的影响及抑制技术 [J]. 钢铁, 2015, 50(12): 42-46. ZHANG Y C, LONG H M, CHUN T J, et al. Influences of Cu and Cl elements from raw materials on the emission of PCDD/Fs and its emissionreduction technology [J]. Iron & Steel, 2015, 50(12): 42-46(in Chinese).
[24] TAKAOKA M, SHIONO A, NISHIMURA K, et al. Dynamic change of copper in fly ash during de novo synthesis of dioxins [J]. Environmental Science & Technology, 2005, 39(15): 5878-5884.
[25] 卢青. 医疗废物回转窑焚烧线中二恶英的生成 [J]. 环境工程学报, 2013, 7(2): 743-746. LU Q. Formation of dioxin in a rotary kiln medical waste incineration line [J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 743-746(in Chinese).
[26] 唐娜, 李馥琪, 罗伟铿, 等. 废物焚烧及工业金属冶炼烟气中二噁英的排放水平及同系物分布 [J]. 安全与环境学报, 2018, 18(4): 1496-1502. TANG N, LI F Q, LUO W K, et al. Concentrations and congener distributions of PCDD/Fs in the flue gas from combustion and metallurgical processing [J]. Journal of Safety and Environment, 2018, 18(4): 1496-1502(in Chinese).
[27] ISHIKAWA R, BUEKENS A, HUANG H, et al. Influence of combustion conditions on dioxin in an industrial-scale fluidized-bed incinerator: Experimental study and statistical modelling [J]. Chemosphere, 1997, 35(3): 465-477. doi: 10.1016/S0045-6535(97)00112-4
[28] 张明远, 万新. 冶金高炉高温熔融处理垃圾飞灰 [J]. 环境工程学报, 2012, 6(8): 2859-2864. ZHANG M Y, WAN X. High-temperature melting treatment of fly ash by blast furnace [J]. Techniques and Equipment for Environmental Pollution Control, 2012, 6(8): 2859-2864(in Chinese).
[29] 别如山. 垃圾焚烧飞灰旋风炉高温熔融处理技术 [J]. 电站系统工程, 2010, 26(4): 9-10, 12. doi: 10.3969/j.issn.1005-006X.2010.04.004 BIE R S. Cyclone furnace technology disposing fly ash from MSW incineration plant [J]. Power System Engineering, 2010, 26(4): 9-10, 12(in Chinese). doi: 10.3969/j.issn.1005-006X.2010.04.004
[30] 闫鹏. 废弃印刷线路板高温燃烧时溴的迁移转化特性和溴代二噁英的排放特性试验研究[D]. 杭州: 浙江大学, 2013. YAN P. Experimental study on the transformation and conversion characteristics of bromine and PBDD/Fs emission in waste printed circuit boards combustion [D]. Hangzhou: Zhejiang University, 2013(in Chinese).
[31] YAN M, LI X D, CHEN T, et al. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs [J]. Journal of Environmental Sciences, 2010, 22(10): 1637-1642. doi: 10.1016/S1001-0742(09)60300-4
[32] OOI T C, LU L M. Formation and mitigation of PCDD/Fs in iron ore sintering [J]. Chemosphere, 2011, 85(3): 291-299. doi: 10.1016/j.chemosphere.2011.08.020
[33] 桑义敏, 余望, 籍龙杰, 等. 土壤直接热脱附过程中二恶英生成特性和抑制机理研究进展 [J]. 环境工程学报, 2020, 14(11): 2912-2923. doi: 10.12030/j.cjee.202002036 SANG Y M, YU W, JI L J, et al. Research progress on formation characteristics and inhibition mechanism of dioxins during direct thermal desorption of soil [J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 2912-2923(in Chinese). doi: 10.12030/j.cjee.202002036
[34] CHIN Y T, LIN C, CHANG-CHIEN G P, et al. PCDD/F formation catalyzed by the metal chlorides and chlorinated aromatic compounds in fly ash [J]. Aerosol and Air Quality Research, 2012, 12(2): 228-236. doi: 10.4209/aaqr.2011.09.0139
[35] HATANAKA T, IMAGAWA T, TAKEUCHI M. Formation of PCDD/fs in artificial solid waste incineration in a laboratory-scale fluidized-bed reactor: Influence of contents and forms of chlorine sources in high-temperature combustion [J]. Environmental Science & Technology, 2000, 34(18): 3920-3924.
[36] 杨建建, 周永信, 苏建, 等. 含氯有机污染土壤热脱附过程中二噁英的生成机理及抑制措施 [J]. 四川环境, 2020, 39(3): 90-96. YANG J J, ZHOU Y X, SU J, et al. Formation mechanism and control measures of dioxins during thermal desorption of chlorinated organic contaminated soil [J]. Sichuan Environment, 2020, 39(3): 90-96(in Chinese).
[37] EVERAERT K, BAEYENS J. The formation and emission of dioxins in large scale thermal processes [J]. Chemosphere, 2002, 46(3): 439-448. doi: 10.1016/S0045-6535(01)00143-6
[38] HATANAKA T, IMAGAWA T, TAKEUCHI M. Effects of copper chloride on formation of polychlorinated dibenzofurans in model waste incineration in a laboratory-scale fluidized-bed reactor [J]. Chemosphere, 2002, 46(3): 393-399. doi: 10.1016/S0045-6535(01)00059-5