[1] KELLER A A, LAZAREVA A. Predicted releases of engineered nanomaterials: From global to regional to local [J]. Environmental Science & Technology Letters, 2013, 1(1): 65-70.
[2] SERVICE R F. American chemical society meeting: nanomaterials show signs of toxicity [J]. Science, 2003, 300(5617): 243-243.
[3] BRUMFIEL G. Nanotechnology: A little knowledge [J]. Nature, 2003, 424(6946): 246-248. doi: 10.1038/424246a
[4] WANG S S, LV J T, MA J Y, et al. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii [J]. Nanotoxicology, 2016, 10(8): 1129-1135. doi: 10.1080/17435390.2016.1179809
[5] OUKARROUM A, ZAIDI W, SAMADANI M, et al. Toxicity of nickel oxide nanoparticles on a freshwater green algal strain of Chlorella vulgaris [J]. BioMed Research International, 2017, 2017: 1-8.
[6] ASHAUER R, O'CONNOR I, ESCHER B I. Toxic mixtures in time-the sequence makes the poison [J]. Environmental Science & Technology, 2017, 51(5): 3084-3092.
[7] OUYANG S H, ZHOU Q X, ZENG H, et al. Natural nanocolloids mediate the phytotoxicity of graphene oxide [J]. Environmental Science & Technology, 2020, 54(8): 4865-4875.
[8] HUANG J, CHENG J P, YI J. Impact of silver nanoparticles on marine diatom Skeletonema costatum [J]. Journal of Applied Toxicology, 2016, 36(10): 1343-1354. doi: 10.1002/jat.3325
[9] LU J, ZHANG S, GAO S H, et al. New insights of the bacterial response to exposure of differently sized silver nanomaterials [J]. Water Research, 2020, 169: 115205.
[10] BARROS D, PRADHAN A, PASCOAL C, et al. Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus [J]. Environmental Pollution, 2021, 268: 115913.
[11] LEAD J R,BATLEY G E, ALVAREZ P J J, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry, 2012, 31(12): 2893-2096. doi: 10.1002/etc.2027
[12] THOMAS N, KUMAR M, PALMISANO G, et al. Antiscaling 3D printed feed spacers via facile nanoparticle coating for membrane distillation [J]. Water Research, 2021, 189: 116649.
[13] MORADI F, SEDAGHAT S, MORADI O, et al. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants [J]. Inorganic and Nano-Metal Chemistry, 2021, 51(1): 133-142. doi: 10.1080/24701556.2020.1769662
[14] KOOK J K, PHUNG V D, KOH D Y, et al. Facile synthesis of boronic acid-functionalized magnetic nanoparticles for efficient dopamine extraction [J]. Nano Convergence, 2019, 6(1): 30. doi: 10.1186/s40580-019-0200-7
[15] BANIHASHEM S, NIKPOUR NEZHATI M N, PANAHI H A, et al. Synthesis of novel chitosan-g-PNVCL nanofibers coated with gold-gold sulfide nanoparticles for controlled release of cisplatin and treatment of MCF-7 breast cancer [J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69(18): 1197-1208. doi: 10.1080/00914037.2019.1683557
[16] VANCE M E, KUIKEN T, VEJERANO E P, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory [J]. Beilstein Journal of Nanotechnology, 2015, 6: 1769-1780. doi: 10.3762/bjnano.6.181
[17] BRATAN S, INSHAKOVA E, INSHAKOV O, et al. World market for nanomaterials: Structure and trends [J]. MATEC Web of Conferences, 2017, 129: 02013.
[18] LEAD J R, BATLEY G E, ALVAREZ P J J, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review [J]. Environmental Toxicology and Chemistry, 2018, 37(8): 2029-2063. doi: 10.1002/etc.4147
[19] TURAN N B, ERKAN H S, ENGIN G O, et al. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review [J]. Process Safety and Environmental Protection, 2019, 130: 238-249. doi: 10.1016/j.psep.2019.08.014
[20] ESPINASSE B P, GEITNER N K, SCHIERZ A, et al. Comparative persistence of engineered nanoparticles in a complex aquatic ecosystem [J]. Environmental Science & Technology, 2018, 52(7): 4072-4078.
[21] EVARISTE L, MOTTIER A, LAGIER L, et al. Assessment of graphene oxide ecotoxicity at several trophic levels using aquatic microcosms [J]. Carbon, 2020, 156: 261-271. doi: 10.1016/j.carbon.2019.09.051
[22] GATOO M A, NASEEM S, ARFAT M Y, et al. Physicochemical properties of nanomaterials: implication in associated toxic manifestations [J]. BioMed Research Intnational, 2014, 2014: 498420.
[23] ANGEL B M, VALLOTTON P, APTE S C. On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae [J]. Aquatic Toxicology, 2015, 168: 90-97. doi: 10.1016/j.aquatox.2015.09.015
[24] CARLSON C, HUSSAIN S M, SCHRAND A M, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species [J]. The Journal of Physical Chemistry B, 2008, 112(43): 13608-13619. doi: 10.1021/jp712087m
[25] IVASK A, KURVET I, KASEMETS K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro [J]. PLoS One, 2014, 9(7): e102108. doi: 10.1371/journal.pone.0102108
[26] KALMAN J, PAUL K B, KHAN F R, et al. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain [J]. Environmental Chemistry, 2015, 12(6): 662-672. doi: 10.1071/EN15035
[27] FOROOZANDEH P, AZIZ A A. Insight into cellular uptake and intracellular trafficking of nanoparticles [J]. Nanoscale Research Letters, 2018, 13(1): 339. doi: 10.1186/s11671-018-2728-6
[28] ZAMANI H, MORADSHAHI A, JAHROMI H D, et al. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina [J]. Aquatic Toxicology, 2014, 154: 176-183. doi: 10.1016/j.aquatox.2014.05.012
[29] YUE Y, LI X M, SIGG L , et al. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison [J]. Journal of Nanobiotechnology, 2017, 15(1): 1-11. doi: 10.1186/s12951-017-0254-9
[30] KOSAK NEE ROHDER L A, BRANDT T, SIGG L, et al. Uptake and effects of cerium(Ⅲ) and cerium oxide nanoparticles toChlamydomonas reinhardtii [J]. Aquatic Toxicology, 2018, 197: 41-46. doi: 10.1016/j.aquatox.2018.02.004
[31] SCHIAVO S, OLIVIERO M, MIGLIETTA M, et al. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels [J]. Science of the Total Environment, 2016, 550: 619-627. doi: 10.1016/j.scitotenv.2016.01.135
[32] PHAM T L. Effect of silver nanoparticles on tropical freshwater and marine microalgae [J]. Journal of Chemistry, 2019, 2019: 1-7.
[33] BUNDSCHUH M, SEITZ F, ROSENFELDT R R, et al. Effects of nanoparticles in fresh waters: Risks, mechanisms and interactions [J]. Freshwater Biology, 2016, 61(12): 2185-2196. doi: 10.1111/fwb.12701
[34] 王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展 [J]. 环境科学, 2010, 31(6): 1409-1418. WANG Z Y, ZHAO J, LI N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms [J]. Environmental Science, 2010, 31(6): 1409-1418(in Chinese).
[35] VALE G, FRANCO C, DINIZ M S, et al. Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea—the role of TiO2 nanoparticles [J]. Ecotoxicology and Environmental Safety, 2014, 109: 161-168. doi: 10.1016/j.ecoenv.2014.07.035
[36] SON J, VAVRA J, FORBES V E. Effects of water quality parameters on agglomeration and dissolution of copper oxide nanoparticles (CuO-NPs) using a central composite circumscribed design [J]. Science of the Total Environment, 2015, 521-522: 183-190. doi: 10.1016/j.scitotenv.2015.03.093
[37] ADELEYE A S, KELLER A A. Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media [J]. Environmental Science & Technology, 2016, 50(22): 12258-12265.
[38] ZHOU C, VITIELLO V, PELLEGRINI D, et al. Toxicological effects of CdSe/ZnS quantum dots on marine planktonic organisms [J]. Ecotoxicology and Environmental Safety, 2016, 123: 26-31. doi: 10.1016/j.ecoenv.2015.09.020
[39] BOOTH A, STORSETH T, ALTIN D, et al. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata [J]. Science of the Total Environment, 2015, 505: 596-605. doi: 10.1016/j.scitotenv.2014.10.010
[40] KROLL A, BEHRA R, KAEGI R, et al. Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles[J]. Plos One, 2014, 9(10): e110709. doi: 10.1371/journal.pone.0110709.
[41] MORELLI E, GABELLIERI E, BONOMINI A, et al. TiO2 nanoparticles in seawater: aggregation and interactions with the green alga Dunaliella tertiolecta [J]. Ecotoxicology and Environmental Safety, 2018, 148: 184-193. doi: 10.1016/j.ecoenv.2017.10.024
[42] VERNEUIL L, SILVESTRE J, MOUCHET F, et al. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia Palea: "A sticky story'' [J]. Nanotoxicology, 2015, 9(2): 219-229. doi: 10.3109/17435390.2014.918202
[43] NOLTE T M, HARTMANN N B, KLEIJN J M, et al. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption [J]. Aquatic Toxicology, 2017, 183: 11-20. doi: 10.1016/j.aquatox.2016.12.005
[44] GOSWAMI L, KIM K H, DEEP A, et al. Engineered nano particles: Nature, behavior, and effect on the environment [J]. Journal of Environmental Management, 2017, 196: 297-315.
[45] 范功端, 陈薇, 郑小梅, 等. 纳米材料对藻细胞毒性效应及致毒机理 [J]. 生态毒理学报, 2018, 13(2): 23-33. doi: 10.7524/AJE.1673-5897.20170420001 FAN G D, CHEN W, ZHENG X M, et al. The cytotoxic effects of nanomaterials on algae and its mechanisms [J]. Asian Journal of Ecotoxicology, 2018, 13(2): 23-33(in Chinese). doi: 10.7524/AJE.1673-5897.20170420001
[46] SENDRA M, YESTE M P, GATICA J M, et al. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum) [J]. Chemosphere, 2017, 179: 279-289. doi: 10.1016/j.chemosphere.2017.03.123
[47] CHEN X J, LU R R, LIU P, et al. Effects of nano-TiO2 on Chlamydomonas reinhardtii cell surface under UV, natural light conditions [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(1): 217-222. doi: 10.1007/s11595-017-1583-0
[48] DU S T, ZHANG P, ZHANG R R, et al. Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus [J]. Chemosphere, 2016, 164: 499-507. doi: 10.1016/j.chemosphere.2016.08.138
[49] MALINA T, MARŠáLKOVá E, HOLÁ K, et al. Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism [J]. Carbon, 2019, 155: 386-396. doi: 10.1016/j.carbon.2019.08.086
[50] ZHAO J, CAO X S, WANG Z Y, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae [J]. Water Research, 2017, 111: 18-27. doi: 10.1016/j.watres.2016.12.037
[51] HU X G, OUYANG S H, MU L, et al. Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles [J]. Environmental Science & Technology, 2015, 49(18): 10825-10833.
[52] TAO X J, YU Y X, FORTNER J D, et al. Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: Evaluation of the sub-lethal photosynthetic responses and inhibition mechanism [J]. Chemosphere, 2015, 122: 162-167. doi: 10.1016/j.chemosphere.2014.11.035
[53] PONTE S, MOORE E A, BORDER C T, et al. Fullerene toxicity in the benthos with implications for freshwater ecosystem services [J]. Science of the Total Environment, 2019, 687: 451-459. doi: 10.1016/j.scitotenv.2019.05.362
[54] INDEGLIA P A, GEORGIEVA A T, KRISHNA V B, et al. Toxicity of functionalized fullerene and fullerene synthesis chemicals [J]. Chemosphere, 2018, 207: 1-9. doi: 10.1016/j.chemosphere.2018.05.023
[55] ZHANG L Q, LEI C, YANG K, et al. Cellular response of Chlorella pyrenoidosa to oxidized multi-walled carbon nanotubes [J]. Environmental Science:Nano, 2018, 5(10): 2415-2425. doi: 10.1039/C8EN00703A
[56] THAKKAR M, MITRA S, WEI L P. Effect on growth, photosynthesis, and oxidative stress of single walled carbon nanotubes exposure to marine Alga Dunaliella tertiolecta [J]. Journal of Nanomaterials, 2016: 2016: 1-9.
[57] JIA K, SUN C L, WANG Y L, et al. Effect of TiO2 nanoparticles and multiwall carbon nanotubes on the freshwater diatom Nitzschia frustulum: Evaluation of growth, cellular components and morphology [J]. Chemistry and Ecology, 2019, 35(1): 69-85. doi: 10.1080/02757540.2018.1528240
[58] LI F M, LIANG Z, ZHENG X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production [J]. Aquatic Toxicology, 2015, 158: 1-13. doi: 10.1016/j.aquatox.2014.10.014
[59] KO K S, KOH D C, KONG I C. Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count [J]. Materials, 2018, 11(1): 121.
[60] WANG L, HUANG X L, SUN W L, et al. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris [J]. Environmental Pollution, 2020, 258: 113647.
[61] ANUSHA L. Inhibition effects of cobalt nano particles against fresh water algal blooms caused by Microcystis and Oscillatoria [J]. American Journal of Applied Scientific Research, 2017, 3(4): 26.
[62] ZHANG J L, SHEN L, XIANG Q Q, et al. Proteomics reveals surface electrical property-dependent toxic mechanisms of silver nanoparticles in Chlorella vulgaris [J]. Environmental Pollution, 2020, 265: 114743.
[63] DEDMAN C J, NEWSON G C, DAVIES G L, et al. Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions [J]. Science of the Total Environment, 2020, 747: 141229.
[64] YAN Z Y, CHEN J, XIAO A, et al. Effects of representative quantum dots on microorganisms and phytoplankton: A comparative study [J]. RSC Advances, 2015, 5(129): 106406-106412. doi: 10.1039/C5RA23730K
[65] XIAO A, WANG C, CHEN J, et al. Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa [J]. Ecotoxicology and Environmental Safety, 2016, 133: 211-217. doi: 10.1016/j.ecoenv.2016.07.026
[66] DOMINGOS R F, SIMON D F, HAUSER C, et al. Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii - nanoparticles or the free ions? [J]. Environmental Science & Technology, 2011, 45(18): 7664-7669.
[67] BHATTACHARYA P, LIN S J, TURNER J P, et al. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis [J]. Journal of Physical Chemistry C, 2010, 114(39): 16556-16561. doi: 10.1021/jp1054759
[68] 许志珍, 赵鹏, 张元宝, 等. 人工纳米材料对典型生物的毒性效应研究进展 [J]. 安全与环境学报, 2017, 17(2): 786-792. XU Z Z, ZHAO P, ZHANG Y B, et al. Research progress review in the toxic effects of the engineering nanomaterials on the typical organisms [J]. Journal of Safety and Environment, 2017, 17(2): 786-792(in Chinese).
[69] YANG W W, MIAO A J, YANG L Y. Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles [J]. PLoS One, 2012, 7(3): e32300. doi: 10.1371/journal.pone.0032300
[70] SU Y, YAN X M, PU Y B, et al. Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese medaka (Oryzias latipes) [J]. Environmental Science & Technology, 2013, 47(9): 4704-4710.
[71] QU R J, WANG X H, WANG Z Y, et al. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes [J]. Journal of Hazardous Materials, 2014, 275: 89-98. doi: 10.1016/j.jhazmat.2014.04.051
[72] LAMMEL T, BOISSEAUX P, NAVAS J M. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1 [J]. Environmental Toxicology, 2015, 30(10): 1192-1204. doi: 10.1002/tox.21991
[73] CHEN Q Q, YIN D Q, HU X L, et al. The effect of nC60 on tissue distribution of ibuprofen in Cyprinus carpio [J]. Science of the Total Environment, 2014, 496: 453-460. doi: 10.1016/j.scitotenv.2014.07.074
[74] HARTMANN N B, von der KAMMER F, HOFMANN T, et al. Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability [J]. Toxicology, 2010, 269(2-3): 190-197. doi: 10.1016/j.tox.2009.08.008
[75] DALAI S, PAKRASHI S, BHUVANESHWARI M, et al. Toxic effect of Cr(Ⅵ) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae [J]. Aquatic Toxicology, 2014, 146: 28-37. doi: 10.1016/j.aquatox.2013.10.029
[76] CHEN J Y, QIAN Y, LI H R, et al. The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa [J]. Environmental Science and Pollution Research, 2015, 22(16): 12407-12414. doi: 10.1007/s11356-015-4492-9
[77] TANG Y L, LI S Y, QIAO J L, et al. Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp [J]. International Journal of Molecular Sciences, 2013, 14(7): 14395-14407. doi: 10.3390/ijms140714395
[78] TANG Y L, TIAN J L, LI S Y, et al. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa [J]. Science of the Total Environment, 2015, 532: 154-161. doi: 10.1016/j.scitotenv.2015.05.081
[79] ZHANG L Q, LEI C, CHEN J J, et al. Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae [J]. Carbon, 2015, 83: 198-207. doi: 10.1016/j.carbon.2014.11.050
[80] LIU N, WANG Y P, GE F, et al. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO [J]. Chemosphere, 2018, 196: 566-574. doi: 10.1016/j.chemosphere.2017.12.184
[81] 陈昊喆. 纳米ZnO/十二烷基苯磺酸钠复合污染体系对小球藻生长的影响[D]. 湘潭: 湘潭大学, 2018. CHEN H Z. The joint effect of binary mixtures of nano-ZnO and sodium dodecyl benzene sulfonate on the growth of Chlorella vulgaris[D]. Xiangtan: Xiangtan University, 2018 (in Chinese).
[82] EVERETT W N, CHERN C, SUN D Z, et al. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates [J]. Toxicology Letters, 2014, 225(1): 177-184. doi: 10.1016/j.toxlet.2013.12.005
[83] ISWARYA V, JOHNSON J B, PARASHAR A, et al. Modulatory effects of Zn2+ ions on the toxicity of citrate- and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus [J]. Environmental Science and Pollution Research, 2017, 24(4): 3790-3801. doi: 10.1007/s11356-016-8131-x
[84] LI L, FERNANDEZ-CRUZ M L, CONNOLLY M, et al. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro [J]. Science of the Total Environment, 2015, 505: 253-260. doi: 10.1016/j.scitotenv.2014.10.020
[85] YE N, WANG Z, FANG H, et al. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus [J]. Journal of Environmental Science and Health, 2017, 52(6): 555-560. doi: 10.1080/10934529.2017.1284434
[86] YE N, WANG Z, WANG S, et al. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: Particles outperform dissolved ions [J]. Nanotoxicology, 2018, 12(5): 423-438. doi: 10.1080/17435390.2018.1458342
[87] TONG T Z, WILKE C M, WU J S, et al. Combined Toxicity of Nano-ZnO and Nano-TiO2: from single to multinanomaterial systems [J]. Environmental Science & Technology, 2015, 49(13): 8113-8123.
[88] WILKE C M, TONG T Z, GAILLARD J F, et al. Attenuation of microbial stress due to nano-Ag and nano-TiO2 interactions under dark conditions [J]. Environmental Science & Technology, 2016, 50(20): 11302-11310.
[89] WILKE C M, WUNDERLICH B, GAILLARD J F, et al. Synergistic bacterial stress results from exposure to nano-Ag and nano-TiO2 mixtures under light in environmental media [J]. Environmental Science & Technology, 2018, 52(5): 3185-3194.
[90] ZHANG C, CHEN X H, TAN L J, et al. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum [J]. Environmental Science and Pollution Research, 2018, 25(13): 13127-13133. doi: 10.1007/s11356-018-1580-7
[91] HUYNH K A, MCCAFFERY J M, CHEN K L. Heteroaggregation reduces antimicrobial activity of silver nanoparticles: Evidence for nanoparticle-cell proximity effects [J]. Environmental Science & Technology Letters, 2014, 1(9): 361-366.
[92] HUANG B, WEI Z B, YANG L Y, et al. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae [J]. Environmental Science & Technology, 2019, 53(7): 3871-3879.
[93] HUANG B, YAN S, XIAO L, et al. Label-free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated raman scattering [J]. Small, 2018, 14(10): 1703246.
[94] LIU Y H, WANG S, WANG Z, et al. TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae [J]. Nanomaterials (Basel), 2018, 8(2): 95.
[95] QUIGG A, CHIN W C, CHEN C S, et al. Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter [J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 686-702.
[96] CHEN F R, XIAO Z G, YUE L, et al. Algae response to engineered nanoparticles: current understanding, mechanisms and implications [J]. Environmental Science-Nano, 2019, 6(4): 1026-1042. doi: 10.1039/C8EN01368C
[97] von MOOS N, SLAVEYKOVA V I. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae—state of the art and knowledge gaps [J]. Nanotoxicology, 2014, 8(6): 605-630. doi: 10.3109/17435390.2013.809810
[98] DUAN G X, ZHANG Y Z, LUAN B Q, et al. Graphene-induced pore formation on cell membranes [J]. Scientific Reports, 2017, 7: 42767.
[99] ZHANG J L, ZHOU Z P, PEI Y, et al. Metabolic profiling of silver nanoparticle toxicity inMicrocystis aeruginosa [J]. Environmental Science:Nano, 2018, 5(11): 2519-2530.
[100] GRZELCZAK M P, DANKS S P, KLIPP R C, et al. Ion transport across biological membranes by carborane-capped gold nanoparticles [J]. Acs Nano, 2017, 11(12): 12492-12499. doi: 10.1021/acsnano.7b06600
[101] SENDRA M, BLASCO J, ARAUJO C V M. Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles [J]. Ecological Indicators, 2018, 95: 1053-1067. doi: 10.1016/j.ecolind.2017.08.050
[102] NGUYEN M K, MOON J Y, LEE Y C. Microalgal ecotoxicity of nanoparticles: An updated review [J]. Ecotoxicology and Environmental Safety, 2020, 201: 110781. doi: 10.1016/j.ecoenv.2020.110781
[103] LI X J, SUN H, MAO X M, et al. Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(20): 7600-7608.
[104] QIAN H F, ZHU K, LU H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses [J]. Science of the Total Environment, 2016, 572: 1213-1221. doi: 10.1016/j.scitotenv.2016.08.039
[105] LEI C, ZHANG L Q, YANG K, et al. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging [J]. Environmental Pollution, 2016, 218: 505-512. doi: 10.1016/j.envpol.2016.07.030
[106] TAYLOR N S, MERRIFIELD R, WILLIAMS T D, et al. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations [J]. Nanotoxicology, 2016, 10(1): 32-41.
[107] MIDDEPOGU A, HOU J, GAO X, et al. Effect and mechanism of TiO2 nanoparticles on the photosynthesis ofChlorella pyrenoidosa [J]. Ecotoxicology and Environmental Safety, 2018, 161: 497-506. doi: 10.1016/j.ecoenv.2018.06.027
[108] YU Z, ZHANG T, ZHU Y. Whole-genome re-sequencing and transcriptome reveal cadmium tolerance related genes and pathways in Chlamydomonas reinhardtii [J]. Ecotoxicology and Environmental Safety, 2020, 191: 110231. doi: 10.1016/j.ecoenv.2020.110231
[109] TAYLOR C, MATZKE M, KROLL A, et al. Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances [J]. Environmental Science-Nano, 2016, 3(2): 396-408. doi: 10.1039/C5EN00183H
[110] von MOOS N, BOWEN P, SLAVEYKOVA V I. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater [J]. Environmental Science:Nano, 2014, 1(3): 214-232. doi: 10.1039/c3en00054k
[111] HE M L, YAN Y Q, PEI F, et al. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles [J]. Scientific Reports, 2017, 7(1): 15526. doi: 10.1038/s41598-017-15667-0