[1] |
李杨帆, 王梦晨, 王闻海. 新时代我国土壤环境规划思路初探[J]. 中国环境管理, 2019, 11(2): 76 − 79.
|
[2] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11.
|
[3] |
卢光华. 冶金工业汞、砷重毒性污染土壤高效修复的应用基础研究[D]. 北京: 北京科技大学, 2019.
|
[4] |
WHO W. H. O. 2016. News Release, Geneva[EB/OL], [2021-08-04]. http://www.who.int/news-room/detail/15-03-2016-an-estimated-12-6-million-deaths-each-year-are-attributable-to-unhealthyenvironments.
|
[5] |
谷庆宝, 马福俊, 张倩, 等. 污染场地固化/稳定化修复的评价方法与标准[J]. 环境科学研究, 2017, 30(5): 755 − 764.
|
[6] |
徐婧婧, 赵科理, 叶正钱. 重金属污染土壤原位钝化修复材料的最新研究进展[J]. 环境污染与防治, 2019, 41(7): 852 − 855.
|
[7] |
宁东峰. 土壤重金属原位钝化修复技术研究进展[J]. 中国农学通报, 2016, 32(23): 72 − 80. doi: 10.11924/j.issn.1000-6850.casb16010119
|
[8] |
TJERNGREN I, KARLSSON T, BJORN E, et al. Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands[J]. Biogeochemistry, 2012, 108(1-3): 335 − 350. doi: 10.1007/s10533-011-9603-1
|
[9] |
BRAVO A G, COSIO C, AMOUROUX D, et al. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant[J]. Water Research, 2014, 49: 391 − 405. doi: 10.1016/j.watres.2013.10.024
|
[10] |
杨志新, 冯圣东, 刘树庆. 镉、锌、铅单元素及其复合污染与土壤过氧化氢酶活性关系的研究[J]. 中国生态农业学报, 2005(4): 138 − 141.
|
[11] |
YANG X, YU I K M, CHO D, et al. Tin-functionalized wood biochar as a sustainable solid catalyst for glucose isomerization in biorefinery[J]. Acs Sustainable Chemistry & Engineering, 2019, 7(5): 4851 − 4860.
|
[12] |
ANTONIADIS V, GOLIA E E, SHAHEEN S M, et al. Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece[J]. Environmental Geochemistry and Health, 2017, 39(2SI): 319 − 330.
|
[13] |
NANCE P, PATTERSON J, WILLIS A, et al. Human health risks from mercury exposure from broken compact fluorescent lamps (CFLs)[J]. Regulatory Toxicology and Pharmacology, 2012, 62(3): 542 − 552. doi: 10.1016/j.yrtph.2011.11.008
|
[14] |
HU B, JIA X, HU J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(10429).
|
[15] |
张小俊. 土壤重金属污染及其危害[J]. 农业开发与装备, 2020(10): 109 − 110. doi: 10.3969/j.issn.1673-9205.2020.10.052
|
[16] |
ZACCONE C, Di CATERINA R, ROTUNNO T, et al. Soil - farming system - food - health: Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples[J]. Soil & Tillage Research, 2010, 107(2): 97 − 105.
|
[17] |
SMITH A H, GOYCOLEA M, HAQUE R, et al. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water[J]. American Journal of Epidemiology, 1998, 147(7): 660 − 669. doi: 10.1093/oxfordjournals.aje.a009507
|
[18] |
YAKUBU Y, ZHOU J, PING D, et al. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash[J]. Journal of Environmental Management, 2018, 207: 243 − 248.
|
[19] |
吴丹萍, 李芳芳, 赵婧, 等. 生物炭在制备及土壤应用中的潜在环境风险[J]. 昆明理工大学学报(自然科学版), 2019, 44(1): 98 − 103.
|
[20] |
KUMPIENE J, ANTELO J, BRANNVALL E, et al. In situ chemical stabilization of trace element-contaminated soil - Field demonstrations and barriers to transition from laboratory to the field - A review[J]. Applied Geochemistry, 2019, 100: 335 − 351. doi: 10.1016/j.apgeochem.2018.12.003
|
[21] |
FEI Y, YAN X, ZHONG L, et al. On-site solidification/stabilization of Cd, Zn, and Pb Co-contaminated soil using cement: Field trial at dongdagou ditch, Northwest China[J]. Environmental Engineering Science, 2018, 35(12): 1329 − 1339. doi: 10.1089/ees.2017.0355
|
[22] |
LIU Y, GUO Z, XIAO X, et al. Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: A field experiment[J]. Science of the Total Environment, 2017, 576: 292 − 302. doi: 10.1016/j.scitotenv.2016.10.065
|
[23] |
LOPAREVA-POHU A, POURRUT B, WATERLOT C, et al. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 1. Influence on soil parameters and metal extractability[J]. Science of the Total Environment, 2011, 409(3): 647 − 654. doi: 10.1016/j.scitotenv.2010.10.040
|
[24] |
DEMUYNCK S, SUCCIU L R, GRUMIAUX F, et al. Effects of field metal-contaminated soils submitted to phytostabilisation and fly ash-aided phytostabilisation on the avoidance behaviour of the earthworm eisenia fetida[J]. Ecotoxicology and Environmental Safety, 2014, 107: 170 − 177. doi: 10.1016/j.ecoenv.2014.05.011
|
[25] |
HOUBEN D, PIRCAR J, SONNET P. Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability[J]. Journal of Geochemical Exploration, 2012, 123(SI): 87 − 94.
|
[26] |
漆佳. 改性凹土制备及其对农田土壤重金属的固定效果研究[D]. 北京: 北京化工大学, 2017.
|
[27] |
LIANG X, LI N, HE L, et al. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J]. Science of the Total Environment, 2019, 688: 818 − 826. doi: 10.1016/j.scitotenv.2019.06.335
|
[28] |
LIANG X, QIN X, HUANG Q, et al. Mercapto functionalized sepiolite: a novel and efficient immobilization agent for cadmium polluted soil[J]. RSC Advances, 2017, 7(63): 39955 − 39961. doi: 10.1039/C7RA07893E
|
[29] |
LIANG X, QIN X, HUANG Q, et al. Remediation mechanisms of mercapto-grafted palygorskite for cadmium pollutant in paddy soil[J]. Environmental Science and Pollution Research, 2017, 24(30): 23783 − 23793. doi: 10.1007/s11356-017-0014-2
|
[30] |
ZHAN F, ZENG W, YUAN X, et al. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China[J]. Environmental Science and Pollution Research, 2019, 26(8): 7743 − 7751. doi: 10.1007/s11356-018-04079-w
|
[31] |
VRINCEANU N O, MOTELICA D M, DUMITRU M, et al. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copsa Mica case study (Romania)[J]. CATENA, 2019, 176: 336 − 342. doi: 10.1016/j.catena.2019.01.015
|
[32] |
魏明俐. 新型磷酸盐固化剂固化高浓度锌铅污染土的机理及长期稳定性试验研究[D]. 南京;东南大学, 2017.
|
[33] |
FANG Y, CAO X, ZHAO L. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil[J]. Environmental Science and Pollution Research, 2012, 19(5): 1659 − 1667. doi: 10.1007/s11356-011-0674-2
|
[34] |
成祝. 原址异位固化稳定化技术修复砷、锑污染土壤工程实例[J]. 广东化工, 2020, 47(7): 170 − 171. doi: 10.3969/j.issn.1007-1865.2020.07.073
|
[35] |
PARIA S, YUET P K. Solidification-stabilization of organic and inorganic contaminants using portland cement: a literature review[J]. Environmental Reviews, 2006, 14(4): 217 − 255. doi: 10.1139/a06-004
|
[36] |
FAMY C, SCRIVENER K L, ATKINSON A, et al. Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars[J]. Cement and Concrete Research, 2002, 32(PII S0008-8846(01)00670-62): 269 − 278.
|
[37] |
KARAMALIDIS A K, VOUDRIAS E A. Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash produced from incineration[J]. Environmental Engineering Science, 2009, 26(1): 81 − 96. doi: 10.1089/ees.2007.0040
|
[38] |
KOGBARA R B, AL-TABBAA A. Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil[J]. Science of the Total Environment, 2011, 409(11): 2325 − 2335. doi: 10.1016/j.scitotenv.2011.02.037
|
[39] |
CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review[J]. Waste Management, 2009, 29(1): 390 − 403. doi: 10.1016/j.wasman.2008.01.019
|
[40] |
闫淑兰, 赵秀红, 罗启仕. 基于文献计量的重金属固化稳定化修复技术发展动态研究[J]. 农业环境科学学报, 2020, 39(2): 229 − 238. doi: 10.11654/jaes.2019-0757
|
[41] |
KUMPIENE J, ORE S, LAGERKVIST A, et al. Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat (vol 145, pg 365, 2007)[J]. Environmental Pollution, 2007, 148(1): 384. doi: 10.1016/j.envpol.2007.02.001
|
[42] |
PANDEY V C, SINGH N. Impact of fly ash incorporation in soil systems[J]. Agriculture Ecosystems & Environment, 2010, 136(1-2): 16 − 27.
|
[43] |
SHAHEEN S M, HOODA P S, TSADILAS C D. Opportunities and challenges in the use of coal fly ash for soil improvements - A review[J]. Journal of Environmental Management, 2014, 145: 249 − 267. doi: 10.1016/j.jenvman.2014.07.005
|
[44] |
王连勇, 薛海月. 粉煤灰在废水处理中的应用进展[J]. 能源与环境, 2020(5): 84 − 86. doi: 10.3969/j.issn.1672-9064.2020.05.032
|
[45] |
RAM L C, MASTO R E. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments[J]. Earth-Science Reviews, 2014, 128: 52 − 74. doi: 10.1016/j.earscirev.2013.10.003
|
[46] |
YE X, KANG S, WANG H, et al. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils[J]. Journal of Hazardous Materials, 2015, 289: 210 − 218. doi: 10.1016/j.jhazmat.2015.02.052
|
[47] |
SUN Y, LI Y, XU Y, et al. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science, 2015, 105: 200 − 206.
|
[48] |
XU Y, LIANG X, XU Y, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2): 193 − 204. doi: 10.1016/S1002-0160(17)60310-2
|
[49] |
OTUNOLA B O, OLOLADE O O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes[J]. Environmental Technology & Innovation, 2020, 18(100692).
|
[50] |
CAO X D, MA L Q, RHUE D R, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environmental Pollution, 2004, 131(3): 435 − 444. doi: 10.1016/j.envpol.2004.03.003
|
[51] |
GUCWA-PRZEPIORA E, MALKOWSKI E, SAS-NOWOSIELSKA A, et al. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths[J]. Environmental Pollution, 2007, 150(3): 338 − 346. doi: 10.1016/j.envpol.2007.01.024
|
[52] |
KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review[J]. Waste Management, 2008, 28(1): 215 − 225. doi: 10.1016/j.wasman.2006.12.012
|
[53] |
潘露露, 李天然, 蒲维肖, 等. 磷酸盐对铅污染土壤稳定化修复机理的研究[J]. 安全与环境工程, 2017, 24(3): 84 − 90.
|
[54] |
QAYYUM M F, REHMAN M Z U, ALI S, et al. Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field[J]. Chemosphere, 2017, 174: 515 − 523. doi: 10.1016/j.chemosphere.2017.02.006
|
[55] |
HUA Y, HEAL K V, FRIESL-HANL W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review[J]. Journal of Hazardous Materials, 2017, 325: 17 − 30. doi: 10.1016/j.jhazmat.2016.11.073
|
[56] |
RAJAPAKSHA A U, AHMAD M, VITHANAGE M, et al. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil[J]. Environmental Geochemistry and Health, 2015, 37(6SI): 931 − 942.
|
[57] |
王旌, 罗启仕, 张长波, 等. 铬污染土壤的稳定化处理及其长期稳定性研究[J]. 环境科学, 2013, 34(10): 4036 − 4041.
|
[58] |
WILSON S C, LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review[J]. Environmental Pollution, 2010, 158(5): 1169 − 1181. doi: 10.1016/j.envpol.2009.10.045
|
[59] |
MCCANN C M, PEACOCK C L, HUDSON-EDWARDS K A, et al. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil[J]. Journal of Hazardous Materials, 2018, 342: 724 − 731. doi: 10.1016/j.jhazmat.2017.08.066
|
[60] |
SHEN Z, JIN F, O'CONNOR D, et al. Solidification/stabilization for soil remediation: An old technology with new vitality[J]. Environmental Science & Technology, 2019, 53(20): 11615 − 11617.
|