[1] COUNCIL N R. Toxicity testing in the 21st century: a vision and a strategy[R]. Washington DC: The National Academies Press, 2007.
[2] GIBB S. Toxicity testing in the 21st century: A vision and a strategy [J]. Reproductive Toxicology (Elmsford, N. Y.), 2008, 25(1): 136-138. doi: 10.1016/j.reprotox.2007.10.013
[3] ANKLEY G T, BENNETT R S, ERICKSON R J, et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment [J]. Environmental Toxicology and Chemistry, 2010, 29: 730-741. doi: 10.1002/etc.34
[4] CONOLLY R B, ANKLEY G T, CHENG W Y, et al. Quantitative adverse outcome pathways and their application to predictive toxicology [J]. Environmental Science & Technology, 2017, 51(8): 4661-4672.
[5] KNAPEN D, ANGRISH M M, FORTIN M C, et al. Adverse outcome pathway networks I: Development and applications [J]. Environmental Toxicology and Chemistry, 2018, 37(6): 1723-1733. doi: 10.1002/etc.4125
[6] WITTWEHR C, ALADJOV H, ANKLEY G, et al. How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology [J]. Toxicological Sciences, 2017, 155(2): 326-336. doi: 10.1093/toxsci/kfw207
[7] JEONG J,CHOI J. Use of adverse outcome pathways in chemical toxicity testing: potential advantages and limitations [J]. Environ Health Toxicol, 2017, 33(1): e2018002. doi: 10.5620/eht.e2018002
[8] ALLEN T E H, GOODMAN J M, GUTSELL S, et al. A history of the molecular initiating event [J]. Chemical Research in Toxicology, 2016, 29(12): 2060-2070. doi: 10.1021/acs.chemrestox.6b00341
[9] ALLEN T E H, GOODMAN J M, GUTSELL S, et al. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment [J]. Chemical Research in Toxicology, 2014, 27(12): 2100-2112. doi: 10.1021/tx500345j
[10] ELLISON C M, ENOCH S J, CRONIN M T. A review of the use of in silico methods to predict the chemistry of molecular initiating events related to drug toxicity [J]. Expert Opinion on Drug Metabolism & Toxicology, 2011, 7(12): 1481-1495.
[11] ELLISON C M, PIECHOTA P, MADDEN J C, et al. Adverse outcome pathway (AOP) informed modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of action [J]. Environmental Science & Technology, 2016, 50(7): 3995-4007.
[12] THOMAS R S, BAHADORI T, BUCKLEY T J, et al. The next generation blueprint of computational toxicology at the US environmental protection agency [J]. Toxicological Sciences, 2019, 169(2): 317-332. doi: 10.1093/toxsci/kfz058
[13] KNUDSEN T B, FITZPATRICK S C, de ABREW K N, et al. FutureTox IV workshop summary: Predictive toxicology for healthy children [J]. Toxicological Sciences, 2021, 180(2): 198-211. doi: 10.1093/toxsci/kfab013
[14] 王中钰, 陈景文, 乔显亮, 等. 面向化学品风险评价的计算(预测)毒理学 [J]. 中国科学(化学), 2016, 46(2): 222-240. doi: 10.1360/N032015-00169 WANG Z Y, CHEN J W, QIAO X L, et al. Computational toxicology: Oriented for chemicals risk assessment [J]. Scientia Sinica Chimica, 2016, 46(2): 222-240(in Chinese). doi: 10.1360/N032015-00169
[15] WEDLAKE A J, FOLIA M, PIECHOTA S, et al. Structural alerts and random forest models in a consensus approach for receptor binding molecular initiating events [J]. Chemical Research in Toxicology, 2020, 33(2): 388-401. doi: 10.1021/acs.chemrestox.9b00325
[16] ALLEN T E H, GOODMAN J M, GUTSELL S, et al. Using 2D structural alerts to define chemical categories for molecular initiating events [J]. Toxicological Sciences, 2018, 165(1): 213-223. doi: 10.1093/toxsci/kfy144
[17] MIAO Y L, FEHER V A, MCCAMMON J A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation [J]. Journal of Chemical Theory and Computation, 2015, 11(8): 3584-3595. doi: 10.1021/acs.jctc.5b00436
[18] MIAO Y, MCCAMMON J A. Gaussian accelerated molecular dynamics: theory, implementation, and applications [J]. Annual Reports in Computational Chemistry, 2017, 13: 231-278.
[19] ZHAN T J, CUI S X, LIU X J, et al. Enhanced disrupting effect of benzophenone-1 chlorination byproducts to the androgen receptor: cell-based assays and gaussian accelerated molecular dynamics simulations [J]. Chemical Research in Toxicology, 2021, 34(4): 1140-1149. doi: 10.1021/acs.chemrestox.1c00023
[20] BROCKMEIER E K, HODGES G, HUTCHINSON T H, et al. The role of omics in the application of adverse outcome pathways for chemical risk assessment [J]. Toxicological Sciences, 2017, 158(2): 252-262. doi: 10.1093/toxsci/kfx097
[21] SPINU N, CRONIN M T D, ENOCH S J, et al. Quantitative adverse outcome pathway (qAOP) models for toxicity prediction [J]. Arch Toxicol, 2020, 94(5): 1497-1510. doi: 10.1007/s00204-020-02774-7
[22] CHENG F, LI H Z, BROOKS B W, et al. Retrospective risk assessment of chemical mixtures in the big data era: an alternative classification strategy to integrate chemical and toxicological data [J]. Environmental Science & Technology, 2020, 54(10): 5925-5927.
[23] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold [J]. Nature, 2021. DOI: 10.1038/S41586-021-03819-2.
[24] BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network [J]. Science, 2021, 373, 6557: 871-876. DOI: 10.1126/science.abj8754.
[25] SCHMIDT C W. Into the black box: what can machine learning offer environmental health research[J]. Environmental Health Perspectives, 2020, 128(2): 22001.
[26] LUECHTEFELD T, MARSH D, ROWLANDS C, et al. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility [J]. Toxicological Sciences, 2018, 165(1): 198-212. doi: 10.1093/toxsci/kfy152
[27] CIALLELLA H, ZHU H. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity [J]. Chemical Research in Toxicology, 2019, 32(4): 536-547. doi: 10.1021/acs.chemrestox.8b00393
[28] BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559(7715): 547-555. doi: 10.1038/s41586-018-0337-2
[29] ZHU H. Big data and artificial intelligence modeling for drug discovery [J]. Annual Review of Pharmacology and Toxicology, 2020, 60: 573-589. doi: 10.1146/annurev-pharmtox-010919-023324