[1] |
DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: Sources, pathways, and effects [J]. Environmental Science & Technology, 2013, 47(10): 4967-4983.
|
[2] |
TSUI T M, LIU S, BRASSO R L, et al. Controls of methylmercury bioaccumulation in forest floor food webs [J]. Environmental Science & Technology, 2019, 53(5): 2434-2440.
|
[3] |
TANG W, LIU Y, GUAN W, et al. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability [J]. Science of the Total Environment, 2020, 714: 136827. doi: 10.1016/j.scitotenv.2020.136827
|
[4] |
LIU M, ZHANG Q, CHENG M, et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure [J]. Nature Communications, 2019, 10(1): 5164. doi: 10.1038/s41467-019-13221-2
|
[5] |
ZHANG H, FENG X, LARSSEN T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure [J]. Environmental Health Perspectives, 2010, 118(9): 1183-1188. doi: 10.1289/ehp.1001915
|
[6] |
KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory iron-reducing bacteria [J]. Applied and Environmental Microbiology, 2006, 72(12): 7919-7921. doi: 10.1128/AEM.01602-06
|
[7] |
FLEMMING H-C, WUERTZ S. Bacteria and archaea on Earth and their abundance in biofilms [J]. Nature Reviews Microbiology, 2019, 17(4): 247-260. doi: 10.1038/s41579-019-0158-9
|
[8] |
FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: An emergent form of bacterial life [J]. Nature Reviews Microbiology, 2016, 14(9): 563-575. doi: 10.1038/nrmicro.2016.94
|
[9] |
BRANFIREUN B A, COSIO C, POULAIN A J, et al. Mercury cycling in freshwater systems-an updated conceptual model [J]. Science of the Total Environment, 2020, 745: 140906. doi: 10.1016/j.scitotenv.2020.140906
|
[10] |
DRANGUET P, FAUCHEUR S L, SLAVEYKOVA V I. Mercury bioavailability, transformations, and effects on freshwater biofilms [J]. Environmental Toxicology and Chemistry, 2017, 36(12): 3194-3205. doi: 10.1002/etc.3934
|
[11] |
HU H, LIN H, ZHENG W, et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria [J]. Nature Geoscience, 2013, 6(9): 751-754. doi: 10.1038/ngeo1894
|
[12] |
KONOPKA A. What is microbial community ecology? [J]. The ISME Journal, 2009, 3(11): 1223-1230. doi: 10.1038/ismej.2009.88
|
[13] |
HAMELIN S, PLANAS D, AMYOT M. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada) [J]. Science of the Total Environment, 2015, 512: 464-471.
|
[14] |
LIN C, JAY J A. Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans [J]. Environmental Science & Technology, 2007, 41(19): 6691-6697.
|
[15] |
VERT M,DOI Y,HELLWICH K,et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) [J]. Pure and Applied Chemistry, 2012, 84(2): 377-410. doi: 10.1351/PAC-REC-10-12-04
|
[16] |
BRANDA S S, VIK Å, FRIEDMAN L, et al. Biofilms: The matrix revisited [J]. Trends in Microbiology, 2005, 13(1): 20-26. doi: 10.1016/j.tim.2004.11.006
|
[17] |
BUFFLE J, WILKINSON K J, VAN LEEUWEN H P. Chemodynamics and bioavailability in natural waters [J]. Environmental Science & Technology, 2009, 43(19): 7170-7174.
|
[18] |
CLECKNER L B, GILMOUR C C, HURLEY J P, et al. Mercury methylation in periphyton of the Florida Everglades [J]. Limnology and Oceanography, 1999, 44(7): 1815-1825. doi: 10.4319/lo.1999.44.7.1815
|
[19] |
BELL A H, SCUDDER B C. Mercury accumulation in periphyton of eight river ecosystems [J]. Journal of the American Water Resources Association, 2007, 43(4): 957-968. doi: 10.1111/j.1752-1688.2007.00078.x
|
[20] |
DESROSIERS M, PLANAS D, MUCCI A. Mercury methylation in the epilithon of boreal shield aquatic ecosystems [J]. Environmental Science & Technology, 2006, 40(5): 1540-1546.
|
[21] |
HAMELIN S, AMYOT M, BARKAY T, et al. Methanogens: principal methylators of mercury in lake periphyton [J]. Environmental Science & Technology, 2011, 45(18): 7693-7700.
|
[22] |
LÁZARO W L, GUIMARÃES J R D, IGNÁCIO A R A, et al. Cyanobacteria enhance methylmercury production: A hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil [J]. Science of the Total Environment, 2013, 456: 231-238.
|
[23] |
ACHÁ D, HINTELMANN H, YEE J. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region [J]. Chemosphere, 2011, 82(6): 911-916. doi: 10.1016/j.chemosphere.2010.10.050
|
[24] |
MAURO J, GUIMARÃES J, HINTELMANN H, et al. Mercury methylation in macrophytes, periphyton, and water - comparative studies with stable and radio-mercury additions [J]. Analytical and Bioanalytical Chemistry, 2002, 374(6): 983-989. doi: 10.1007/s00216-002-1534-1
|
[25] |
BOUCHET S, GOÑI-URRIZA M, MONPERRUS M, et al. Linking microbial activities and low-molecular-weight thiols to Hg methylation in biofilms and periphyton from high-altitude tropical lakes in the Bolivian altiplano [J]. Environmental Science & Technology, 2018, 52(17): 9758-9767.
|
[26] |
CORREIA R R S, MIRANDA M R, GUIMARÃES J R D. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: Effect of different inhibitors [J]. Environmental Research, 2012, 112: 86-91. doi: 10.1016/j.envres.2011.11.002
|
[27] |
LÁZARO W L, DÍEZ S, BRAVO A G, et al. Cyanobacteria as regulators of methylmercury production in periphyton [J]. Science of the Total Environment, 2019, 668: 723-729. doi: 10.1016/j.scitotenv.2019.02.233
|
[28] |
LÁZARO W L, DÍEZ S, SILVA C J D, et al. Waterscape determinants of net mercury methylation in a tropical wetland [J]. Environmental Research, 2016, 150: 438-445. doi: 10.1016/j.envres.2016.06.028
|
[29] |
GUIMARÃES J R D, MAURO J B N, MEILI M, et al. Simultaneous radioassays of bacterial production and mercury methylation in the periphyton of a tropical and a temperate wetland [J]. Journal of Environmental Management, 2006, 81(2): 95-100. doi: 10.1016/j.jenvman.2005.09.023
|
[30] |
LÁZARO W L, DÍEZ S, SILVA C J D, et al. Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland [J]. Science of the Total Environment, 2018, 627: 1345-1352. doi: 10.1016/j.scitotenv.2018.01.186
|
[31] |
SCHWARTZ G E, OLSEN T A, MULLER K A, et al. Ecosystem controls on methylmercury production by periphyton biofilms in a contaminated stream: implications for predictive modeling [J]. Environmental Toxicology and Chemistry, 2019, 38(11): 2426-2435. doi: 10.1002/etc.4551
|
[32] |
OLSEN T A, BRANDT C C, BROOKS S C. Periphyton biofilms influence net methylmercury production in an industrially contaminated system [J]. Environmental Science & Technology, 2016, 50(20): 10843-10850.
|
[33] |
HUGUET L, CASTELLE S, SCHÄFER J, et al. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana [J]. Science of the Total Environment, 2010, 408(6): 1338-1348. doi: 10.1016/j.scitotenv.2009.10.058
|
[34] |
BUCKMAN K L, MARVIN-DIPASQUALE M, TAYLOR V F, et al. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna [J]. Environmental Toxicology and Chemistry, 2015, 34(7): 1649-1658. doi: 10.1002/etc.2964
|
[35] |
LIN T Y, KAMPALATH R A, LIN C, et al. Investigation of mercury methylation pathways in biofilm versus planktonic cultures of Desulfovibrio desulfuricans [J]. Environmental Science & Technology, 2013, 47(11): 5695-5702.
|
[36] |
HAMELIN S, PLANAS D, AMYOT M. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada) [J]. Environmental Pollution, 2015, 197: 221-230. doi: 10.1016/j.envpol.2014.11.007
|
[37] |
BRAVO A G, COSIO C. Biotic formation of methylmercury: A bio-physico-chemical conundrum [J]. Limnology and Oceanography, 2020, 65(5): 1010-1027. doi: 10.1002/lno.11366
|
[38] |
JENSEN S, JERNELÖV A. Biological methylation of mercury in aquatic organisms [J]. Nature, 1969, 223(5207): 753-754. doi: 10.1038/223753a0
|
[39] |
WOOD J M. Biological cycles for toxic elements in the environment [J]. Science, 1974, 183(4129): 1049-1052. doi: 10.1126/science.183.4129.1049
|
[40] |
COMPEAU G C, BARTHA R. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment [J]. Applied and Environmental Microbiology, 1985, 50(2): 498-502. doi: 10.1128/aem.50.2.498-502.1985
|
[41] |
FLEMING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium [J]. Applied and Environmental Microbiology, 2006, 72(1): 457-464. doi: 10.1128/AEM.72.1.457-464.2006
|
[42] |
CHOI S C, CHASE T, BARTHA R. Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS [J]. Applied and Environmental Microbiology, 1994, 60(4): 1342-1346. doi: 10.1128/aem.60.4.1342-1346.1994
|
[43] |
CHOI S C, CHASE T, BARTHA R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS [J]. Applied and Environmental Microbiology, 1994, 60(11): 4072-4077. doi: 10.1128/aem.60.11.4072-4077.1994
|
[44] |
EKSTROM E B, MOREL F M M, BENOIT J M. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria [J]. Applied and Environmental Microbiology, 2003, 69(9): 5414-5422. doi: 10.1128/AEM.69.9.5414-5422.2003
|
[45] |
EKSTROM E B, MOREL F M M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria [J]. Environmental Science & Technology, 2008, 42(1): 93-99.
|
[46] |
PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation [J]. Science, 2013, 339(6125): 1332-1335. doi: 10.1126/science.1230667
|
[47] |
GILMOUR C C, PODAR M, BULLOCK A L, et al. Mercury methylation by novel microorganisms from new environments [J]. Environmental Science & Technology, 2013, 47(20): 11810-11820.
|
[48] |
LATTIF A A, CHANDRA J, CHANG J, et al. Proteomics and pathway mapping analyses reveal phase-dependent over-expression of proteins associated with carbohydrate metabolic pathways in Candida albicans biofilms [J]. The Open Proteomics Journal, 2008, 1: 5-26. doi: 10.2174/1875039700801010005
|
[49] |
RESCH A, ROSENSTEIN R, NERZ C, et al. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions [J]. Applied and Environmental Microbiology, 2005, 71(5): 2663-2676. doi: 10.1128/AEM.71.5.2663-2676.2005
|
[50] |
WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research [J]. Nature, 2017, 551(7680): 313-320. doi: 10.1038/nature24624
|
[51] |
YIN W, CAI X, MA H, et al. A decade of research on the second messenger c-di-AMP [J]. FEMS Microbiology Reviews, 2020, 44(6): 701-724. doi: 10.1093/femsre/fuaa019
|
[52] |
FLEMMING H C, WINGENDER J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-633. doi: 10.1038/nrmicro2415
|
[53] |
SHENG G, YU H, LI X. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review [J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
|
[54] |
WEI L, LI Y, NOGUERA D R, et al. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: Effect of EPS fractional polarity on binding mechanism [J]. Journal of Hazardous Materials, 2017, 321: 473-483. doi: 10.1016/j.jhazmat.2016.05.016
|
[55] |
ZHANG D, PAN X, MOSTOFA K M G, et al. Complexation between Hg(II) and biofilm extracellular polymeric substances: An application of fluorescence spectroscopy [J]. Journal of Hazardous Materials, 2010, 175(40546): 359-365.
|
[56] |
ZHANG P, CHEN Y, PENG M, et al. Extracellular polymeric substances dependence of surface interactions of Bacillus subtilis with Cd2+ and Pb2+: An investigation combined with surface plasmon resonance and infrared spectra [J]. Colloids and Surfaces B: Biointerfaces, 2017, 154: 357-364. doi: 10.1016/j.colsurfb.2017.03.046
|
[57] |
BENOIT J M, GILMOUR C C, MASON R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters [J]. Environmental Science & Technology, 1999, 33(6): 951-957.
|
[58] |
BENOIT J M, MASON R P, GILMOUR C C. Estimation of mercury‐sulfide speciation in sediment pore waters using octanol—water partitioning and implications for availability to methylating bacteria [J]. Environmental Toxicology and Chemistry, 1999, 18(10): 2138-2141.
|
[59] |
GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions [J]. Environmental Science & Technology, 2012, 46(5): 2715-2723.
|
[60] |
ZHANG T, KIM B, LEVARD C, et al. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides [J]. Environmental Science & Technology, 2012, 46(13): 6950-6958.
|
[61] |
COLOMBO M J, HA J, REINFELDER J R, et al. Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132 [J]. Geochimica et Cosmochimica Acta, 2013, 112: 166-177. doi: 10.1016/j.gca.2013.03.001
|
[62] |
DASH H R, BASU S, DAS S. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B [J]. Archives of Microbiology, 2017, 199(3): 445-455. doi: 10.1007/s00203-016-1317-2
|
[63] |
DASH H R, DAS S. Interaction between mercuric chloride and extracellular polymers of biofilm-forming mercury resistant marine bacterium Bacillus thuringiensis PW-05 [J]. RSC Advances, 2016, 6(111): 109793-109802. doi: 10.1039/C6RA21069D
|
[64] |
LECLERC M, PLANAS D, AMYOT M. Relationship between extracellular low-molecular-weight thiols and mercury species in natural lake periphytic biofilms [J]. Environmental Science & Technology, 2015, 49(13): 7709-7716.
|
[65] |
SCHAEFER J K, MOREL F M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens [J]. Nature Geoscience, 2009, 2(2): 123-126. doi: 10.1038/ngeo412
|
[66] |
CHENG J, ZHAO W, LIU Y, et al. Adsorption properties and gaseous mercury transformation rate of natural biofilm [J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(5): 516-520. doi: 10.1007/s00128-008-9526-2
|
[67] |
KANG F, ALVAREZ P J J, ZHU D. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity [J]. Environmental Science & Technology, 2014, 48(1): 316-322.
|
[68] |
KANG F, QU X, ALVAREZ P J J, et al. Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: New insights for heavy metals biomineralization on microbial surfaces [J]. Environmental Science & Technology, 2017, 51(5): 2776-2785.
|
[69] |
LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria [J]. Science, 2000, 290(5497): 1744-1747. doi: 10.1126/science.290.5497.1744
|
[70] |
ZHANG Z, SI R, LV J, et al. Effects of extracellular polymeric substances on the formation and methylation of mercury sulfide nanoparticles [J]. Environmental Science & Technology, 2020, 54(13): 8061-8071.
|
[71] |
WANG L, WANG L, REN X, et al. pH dependence of structure and surface properties of microbial EPS [J]. Environmental Science & Technology, 2012, 46(2): 737-744.
|
[72] |
WANG L, WANG L, YE X, et al. Spatial configuration of extracellular polymeric substances of Bacillus megaterium TF10 in aqueous solution [J]. Water Research, 2012, 46(11): 3490-3496. doi: 10.1016/j.watres.2012.03.054
|
[73] |
IKUMA K, DECHO A W, LAU B L. When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles [J]. Frontiers in Microbiology, 2015, 6: 591.
|
[74] |
HALL-STOODLEY L, COSTERTON J W, STOODLEY P. Bacterial biofilms: From the natural environment to infectious diseases [J]. Nature Reviews Microbiology, 2004, 2(2): 95-108. doi: 10.1038/nrmicro821
|
[75] |
ITO T, NIELSEN J L, OKABE S, et al. Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization [J]. Applied and Environmental Microbiology, 2002, 68(1): 356-364. doi: 10.1128/AEM.68.1.356-364.2002
|
[76] |
BRAVO A G, BOUCHET S, TOLU J, et al. Molecular composition of organic matter controls methylmercury formation in boreal lakes [J]. Nature Communications, 2017, 8: 14255. doi: 10.1038/ncomms14255
|
[77] |
GUILLEMETTE F, MCCALLISTER S L, GIORGIO P A D. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria [J]. The ISME Journal, 2016, 10(6): 1373-1382. doi: 10.1038/ismej.2015.215
|
[78] |
YU R, FLANDERS J R, MACK E E, et al. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments [J]. Environmental Science & Technology, 2012, 46(5): 2684-2691.
|
[79] |
LIU Y, JOHS A, BI L, et al. Unraveling microbial communities associated with methylmercury production in paddy soils [J]. Environmental Science & Technology, 2018, 52(22): 13110-13118.
|
[80] |
YU R, REINFELDER J R, HINES M E, et al. Syntrophic pathways for microbial mercury methylation [J]. The ISME Journal, 2018, 12(7): 1826-1835. doi: 10.1038/s41396-018-0106-0
|
[81] |
BORREL G, ADAM P S, GRIBALDO S. Methanogenesis and the wood-ljungdahl pathway: An ancient, versatile, and fragile association [J]. Genome Biology and Evolution, 2016, 8(6): 1706-1711. doi: 10.1093/gbe/evw114
|
[82] |
CHEAH Y E, YOUNG J D. Isotopically nonstationary metabolic flux analysis (INST-MFA): Putting theory into practice [J]. Current Opinion in Biotechnology, 2018, 54: 80-87. doi: 10.1016/j.copbio.2018.02.013
|
[83] |
LONG C P, ANTONIEWICZ M R. High-resolution 13C metabolic flux analysis [J]. Nature Protocols, 2019, 14(10): 2856-2877. doi: 10.1038/s41596-019-0204-0
|
[84] |
PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria [J]. Nature Reviews Microbiology, 2016, 14(9): 576-588. doi: 10.1038/nrmicro.2016.89
|
[85] |
HAO Y, WINANS S C, GLICK B R, et al. Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries [J]. Environmental Microbiology, 2010, 12(1): 105-117. doi: 10.1111/j.1462-2920.2009.02049.x
|
[86] |
REICHHARDT C, PARSEK M R. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization [J]. Frontiers in Microbiology, 2019, 10: 677. doi: 10.3389/fmicb.2019.00677
|
[87] |
CHADWICK G L, OTERO F J, GRALNICK J A, et al. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41): 20716-20724. doi: 10.1073/pnas.1912498116
|
[88] |
NEU T R, MANZ B, VOLKE F, et al. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems [J]. FEMS Microbiology Ecology, 2010, 72(1): 1-21. doi: 10.1111/j.1574-6941.2010.00837.x
|
[89] |
DOGSA I, KRIECHBAUM M, STOPAR D, et al. Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS [J]. Biophysical Journal, 2005, 89(4): 2711-2720. doi: 10.1529/biophysj.105.061648
|
[90] |
BENIGAR E, DOGSA I, STOPAR D, et al. Structure and dynamics of a polysaccharide matrix: Aqueous solutions of bacterial levan [J]. Langmuir, 2014, 30(14): 4172-4182. doi: 10.1021/la500830j
|
[91] |
HINK M A. Fluorescence correlation spectroscopy [J]. Methods of Molecular Biology, 2015, 1251(1251): 135-150.
|
[92] |
HUANG D, XUE W, ZENG G, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity [J]. Water Research, 2016, 106: 15-25. doi: 10.1016/j.watres.2016.09.050
|
[93] |
BLAZEWICZ S J, BARNARD R L, DALY R A, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses [J]. The ISME Journal, 2013, 7(11): 2061-2068. doi: 10.1038/ismej.2013.102
|
[94] |
RAMOS C, MØLBAK L, MOLIN S. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates [J]. Applied and Environmental Microbiology, 2000, 66(2): 801-809. doi: 10.1128/AEM.66.2.801-809.2000
|
[95] |
CHENG L, HOUSE M W, WEISS W J, et al. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors [J]. Water Research, 2016, 89: 321-329. doi: 10.1016/j.watres.2015.11.066
|
[96] |
DHAR B R, SIM J, RYU H, et al. Microbial activity influences electrical conductivity of biofilm anode [J]. Water Research, 2017, 127: 230-238. doi: 10.1016/j.watres.2017.10.028
|
[97] |
WANG J, CHEN Y, DONG Y, et al. A new method to measure and model dynamic oxygen microdistributions in moving biofilms [J]. Environmental Pollution, 2017, 229: 199-209. doi: 10.1016/j.envpol.2017.05.062
|
[98] |
BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233-237. doi: 10.1038/s41586-018-0386-6
|
[99] |
WAGNER M, HAIDER S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes [J]. Current Opinion in Biotechnology, 2012, 23(1): 96-102. doi: 10.1016/j.copbio.2011.10.010
|