[1] |
SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway [J]. Chemical Engineering Journal, 2015, 276: 193-204. doi: 10.1016/j.cej.2015.04.021
|
[2] |
徐萍, 王娜, 文志潘, 等. 新型纳米CeO2催化类Fenton降解盐酸四环素 [J]. 环境化学, 2020, 39(3): 601-609. doi: 10.7524/j.issn.0254-6108.2019103003
XU P, WANG N, WEN Z P, et al. Degradation of tetracycline hydrochloride via a heterogeneous Fenton-like catalyzed by nano-CeO2 [J]. Environmental Chemistry, 2020, 39(3): 601-609(in Chinese). doi: 10.7524/j.issn.0254-6108.2019103003
|
[3] |
LI K S, LU X Y, ZHANG Y, et al. Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants [J]. Environmental Research, 2020, 185: 109409. doi: 10.1016/j.envres.2020.109409
|
[4] |
PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring [J]. Water Research, 2015, 72: 3-27. doi: 10.1016/j.watres.2014.08.053
|
[5] |
LI Y, XIA Y, LIU K L, et al. Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: Nanointerface and carbon sheath synergistic effect [J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25494-25502.
|
[6] |
XIAO R Y, LUO Z H, WEI Z S, et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies [J]. Current Opinion in Chemical Engineering, 2018, 19: 51-58. doi: 10.1016/j.coche.2017.12.005
|
[7] |
LIN K Y A, ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst [J]. Chemical Engineering Journal, 2017, 313: 1320-1327. doi: 10.1016/j.cej.2016.11.025
|
[8] |
LIU Y X, WANG Y, WANG Q, et al. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) [J]. Chemosphere, 2018, 190: 431-441. doi: 10.1016/j.chemosphere.2017.10.020
|
[9] |
SHAD A, CHEN J, QU R J, et al. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways [J]. Chemical Engineering Journal, 2020, 398: 125357. doi: 10.1016/j.cej.2020.125357
|
[10] |
ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications [J]. Chemosphere, 2017, 189: 224-238. doi: 10.1016/j.chemosphere.2017.09.042
|
[11] |
OUYANG D, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures [J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235
|
[12] |
LI J, XU M J, YAO G, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation [J]. Chemical Engineering Journal, 2018, 348: 1012-1024. doi: 10.1016/j.cej.2018.05.032
|
[13] |
XU H D, JIANG N, WANG D, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways [J]. Applied Catalysis B: Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350
|
[14] |
ZHU S S, HUANG X C, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms [J]. Environmental Science & Technology, 2018, 52(15): 8649-8658.
|
[15] |
HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material [J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755
|
[16] |
YIN Z B, XU S, LIU S, et al. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium [J]. Bioresource Technology, 2020, 300: 122680. doi: 10.1016/j.biortech.2019.122680
|
[17] |
WANG H, ZHAO W, CHEN Y N, et al. Nickel aluminum layered double oxides modified magnetic biochar from waste corncob for efficient removal of acridine orange [J]. Bioresource Technology, 2020, 315: 123834. doi: 10.1016/j.biortech.2020.123834
|
[18] |
WANG H B, LIU Y, IFTHIKAR J, et al. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment [J]. Bioresource Technology, 2018, 256: 269-276. doi: 10.1016/j.biortech.2018.02.019
|
[19] |
SEWU D D, TRAN H N, OHEMENG-BOAHEN G, et al. Facile magnetic biochar production route with new goethite nanoparticle precursor [J]. Science of the Total Environment, 2020, 717: 137091. doi: 10.1016/j.scitotenv.2020.137091
|
[20] |
LI K, MA S L, XU S J, et al. The mechanism changes during bisphenol A degradation in three iron functionalized biochar/peroxymonosulfate systems: The crucial roles of iron contents and graphitized carbon layers [J]. Journal of Hazardous Materials, 2021, 404: 124145. doi: 10.1016/j.jhazmat.2020.124145
|
[21] |
FU H C, ZHAO P, XU S J, et al. Fabrication of Fe3O4 and graphitized porous biochar composites for activating peroxymonosulfate to degrade p-hydroxybenzoic acid: Insights on the mechanism [J]. Chemical Engineering Journal, 2019, 375: 121980. doi: 10.1016/j.cej.2019.121980
|
[22] |
LI Y, MA S L, XU S J, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4 [J]. Chemical Engineering Journal, 2020, 387: 124094. doi: 10.1016/j.cej.2020.124094
|
[23] |
LUO J M, BO S F, QIN Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation [J]. Chemical Engineering Journal, 2020, 395: 125063. doi: 10.1016/j.cej.2020.125063
|
[24] |
XU L, FU B R, SUN Y, et al. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application [J]. Chemical Engineering Journal, 2020, 400: 125870. doi: 10.1016/j.cej.2020.125870
|
[25] |
崔志文, 任艳芳, 王伟, 等. 碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制 [J]. 环境科学, 2020, 41(7): 3315-3325.
CUI Z W, REN Y F, WANG W, et al. Adsorption characteristics and mechanism of cadmium in water by alkali and magnetic composite modified wheat straw biochar [J]. Environmental Science, 2020, 41(7): 3315-3325(in Chinese).
|
[26] |
袁健, 钱雅洁, 薛罡, 等. 活性污泥水热碳化法制备磁性炭及对水体Cd2+及Pb2+的去除 [J]. 环境工程, 2020, 38(2): 55-62.
YUAN J, QIAN Y J, XUE G, et al. Removal of cadmium and lead in water by magnetic carbon prepared from activated sludge with hydrothermal carbonization [J]. Environmental Engineering, 2020, 38(2): 55-62(in Chinese).
|
[27] |
ZHU S J, XU Y P, ZHU Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation [J]. Chemical Engineering Journal, 2020, 384: 123298. doi: 10.1016/j.cej.2019.123298
|
[28] |
LI Z, SUN Y Q, YANG Y, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater [J]. Journal of Hazardous Materials, 2020, 383: 121240. doi: 10.1016/j.jhazmat.2019.121240
|
[29] |
李玉梅, 王畅, 张连科, 等. 生物炭/铁酸镧磁性复合材料的制备及对亚甲基蓝的吸附性能 [J]. 环境污染与防治, 2020, 42(7): 826-832.
LI Y M, WANG C, ZHANG L K, et al. Preparation of biochar/LaFeO3 magnetic composite material and adsorption properties for methylene blue [J]. Environmental Pollution & Control, 2020, 42(7): 826-832(in Chinese).
|
[30] |
SHAN D N, DENG S B, ZHAO T N, et al. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling [J]. Journal of Hazardous Materials, 2016, 305: 156-163. doi: 10.1016/j.jhazmat.2015.11.047
|
[31] |
WANG S S, ZHAO M Y, ZHOU M, et al. Biomass facilitated phase transformation of natural hematite at high temperatures and sorption of Cd2+ and Cu2+ [J]. Environment International, 2019, 124: 473-481. doi: 10.1016/j.envint.2019.01.004
|
[32] |
吴鸿伟, 冯启言, 杨虹, 等. 改性生物炭负载纳米零价铁去除水体中头孢噻肟 [J]. 环境科学学报, 2017, 37(7): 2691-2698.
WU H W, FENG Q Y, YANG H, et al. Nanoscale zero valent iron stabilized on modified biochar to remove cefotaxime from aqueous solutions [J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2691-2698(in Chinese).
|
[33] |
吴明山, 马建锋, 杨淑敏, 等. 磁性生物炭复合材料研究进展 [J]. 功能材料, 2016, 47(7): 7028-7033. doi: 10.3969/j.issn.1001-9731.2016.07.006
WU M S, MA J F, YANG S M, et al. Progress of the magnetic biochar composite materials [J]. Journal of Functional Materials, 2016, 47(7): 7028-7033(in Chinese). doi: 10.3969/j.issn.1001-9731.2016.07.006
|
[34] |
YI Y Q, TU G Q, ZHAO D Y, et al. Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor [J]. Chemical Engineering Journal, 2019, 360: 212-220. doi: 10.1016/j.cej.2018.11.205
|
[35] |
WANG K, SUN Y B, TANG J C, et al. Aqueous Cr(VI) removal by a novel ball milled Fe0-biochar composite: Role of biochar electron transfer capacity under high pyrolysis temperature [J]. Chemosphere, 2020, 241: 125044. doi: 10.1016/j.chemosphere.2019.125044
|
[36] |
HEO J, YOON Y, LEE G, et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4-biochar composite [J]. Bioresource Technology, 2019, 281: 179-187. doi: 10.1016/j.biortech.2019.02.091
|
[37] |
ZHANG Y T, LIU N, YANG Y D, et al. Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124926. doi: 10.1016/j.colsurfa.2020.124926
|
[38] |
ZHANG C, LU J, WU J. One-step green preparation of magnetic seaweed biochar/sulfidated Fe0 composite with strengthen adsorptive removal of tetrabromobisphenol A through in situ reduction [J]. Bioresource Technology, 2020, 307: 123170. doi: 10.1016/j.biortech.2020.123170
|
[39] |
BOMBUWALA DEWAGE N, LIYANAGE A S, PITTMAN C U Jr, et al. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar [J]. Bioresource Technology, 2018, 263: 258-265. doi: 10.1016/j.biortech.2018.05.001
|
[40] |
ZHONG D L, ZHANG Y R, WANG L L, et al. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe3O4 and persistent free radicals [J]. Environmental Pollution, 2018, 243: 1302-1309. doi: 10.1016/j.envpol.2018.08.093
|
[41] |
ZHANG L K, GUO J Y, HUANG X M, et al. Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(ii) and Cd(ii) [J]. RSC Advances, 2019, 9(1): 365-376. doi: 10.1039/C8RA09061K
|
[42] |
LIANG S, SHI S Q, ZHANG H H, et al. One-pot solvothermal synthesis of magnetic biochar from waste biomass: Formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution [J]. Science of the Total Environment, 2019, 695: 133886. doi: 10.1016/j.scitotenv.2019.133886
|
[43] |
YIN Z H, LIU Y G, LIU S B, et al. Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper [J]. Science of the Total Environment, 2018, 639: 1530-1542. doi: 10.1016/j.scitotenv.2018.05.130
|
[44] |
ZHU Y, YI B J, HU H Y, et al. The relationship of structure and organic matter adsorption characteristics by magnetic cattle manure biochar prepared at different pyrolysis temperatures [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104112. doi: 10.1016/j.jece.2020.104112
|
[45] |
YI Y Q, TU G Q, ERIC TSANG P, et al. Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar [J]. Chemical Engineering Journal, 2020, 380: 122518. doi: 10.1016/j.cej.2019.122518
|
[46] |
IFTHIKAR J, WANG J, WANG Q L, et al. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications [J]. Bioresource Technology, 2017, 238: 399-406. doi: 10.1016/j.biortech.2017.03.133
|
[47] |
DAI X H, FAN H X, YI C Y, et al. Solvent-free synthesis of a 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutants [J]. Journal of Materials Chemistry A, 2019, 7(12): 6849-6858. doi: 10.1039/C8TA11661J
|
[48] |
YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene [J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103
|
[49] |
ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment [J]. Chemosphere, 2018, 191: 64-71. doi: 10.1016/j.chemosphere.2017.10.026
|
[50] |
RONG X, XIE M, KONG L S, et al. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation [J]. Chemical Engineering Journal, 2019, 372: 294-303. doi: 10.1016/j.cej.2019.04.135
|
[51] |
HUANG Z Y, WANG T L, SHEN M X, et al. Coagulation treatment of swine wastewater by the method of in situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst [J]. Chemical Engineering Journal, 2019, 369: 784-792. doi: 10.1016/j.cej.2019.03.136
|
[52] |
FU H C, MA S L, ZHAO P, et al. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism [J]. Chemical Engineering Journal, 2019, 360: 157-170. doi: 10.1016/j.cej.2018.11.207
|
[53] |
YANG M T, DU Y C, TONG W C, et al. Cobalt-impregnated biochar produced from CO2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen [J]. Chemosphere, 2019, 226: 924-933. doi: 10.1016/j.chemosphere.2019.04.004
|
[54] |
ZHANG T, LI C Y, SUN X T, et al. Iron nanoparticles encapsulated within nitrogen and sulfur co-doped magnetic porous carbon as an efficient peroxymonosulfate activator to degrade 1-naphthol [J]. Science of the Total Environment, 2020, 739: 139896. doi: 10.1016/j.scitotenv.2020.139896
|
[55] |
LI Z, SUN Y Q, YANG Y, et al. Comparing biochar-and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway [J]. Environmental Research, 2020, 183: 109156. doi: 10.1016/j.envres.2020.109156
|
[56] |
JIANG S F, LING L L, CHEN W J, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors [J]. Chemical Engineering Journal, 2019, 359: 572-583. doi: 10.1016/j.cej.2018.11.124
|
[57] |
GAN L, ZHONG Q, GENG A B, et al. Cellulose derived carbon nanofiber: A promising biochar support to enhance the catalytic performance of CoFe2O4 in activating peroxymonosulfate for recycled dimethyl phthalate degradation [J]. Science of the Total Environment, 2019, 694: 133705. doi: 10.1016/j.scitotenv.2019.133705
|
[58] |
WAN Z H, SUN Y Q, TSANG D C W, et al. Sustainable impact of tartaric acid as electron shuttle on hierarchical iron-incorporated biochar [J]. Chemical Engineering Journal, 2020, 395: 125138. doi: 10.1016/j.cej.2020.125138
|
[59] |
LIU C, CHEN L W, DING D H, et al. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor [J]. Applied Catalysis B: Environmental, 2019, 254: 312-320. doi: 10.1016/j.apcatb.2019.05.014
|
[60] |
YANG Q, MA Y H, CHEN F, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water [J]. Chemical Engineering Journal, 2019, 378: 122149. doi: 10.1016/j.cej.2019.122149
|
[61] |
SUN H W, PENG X X, ZHANG S P, et al. Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water [J]. Bioresource Technology, 2017, 241: 244-251. doi: 10.1016/j.biortech.2017.05.102
|
[62] |
HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate [J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. doi: 10.1039/C8TA02282H
|
[63] |
WANG J, KOU L D, ZHAO L, et al. One-pot fabrication of sludge-derived magnetic Fe, N-codoped carbon catalysts for peroxymonosulfate-induced elimination of phenolic contaminants [J]. Chemosphere, 2020, 248: 126076. doi: 10.1016/j.chemosphere.2020.126076
|