[1] XIONG P, YAN X T, ZHU Q Q, et al. A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants [J]. Environmental Science & Technology, 2019, 53(23): 13551-13569.
[2] KALACHOVA K, HRADKOVA P, LANKOVA D, et al. Occurrence of brominated flame retardants in household and car dust from the Czech Republic [J]. Science of the Total Environment, 2012, 441: 182-193. doi: 10.1016/j.scitotenv.2012.09.061
[3] BESIS A, CHRISTIA C, POMA G, et al. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure [J]. Environmental Pollution, 2017, 230: 871-881. doi: 10.1016/j.envpol.2017.07.032
[4] COVACI A, HARRAD S, ABDALLAH M A E, et al. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour [J]. Environment International, 2011, 37(2): 532-556. doi: 10.1016/j.envint.2010.11.007
[5] XIE Z Y, MÖLLER A, AHRENS L, et al. Brominated flame retardants in seawater and atmosphere of the Atlantic and the Southern Ocean [J]. Environmental Science & Technology, 2011, 45(5): 1820-1826.
[6] NAKARI T, HUHTALA S. In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant [J]. Environmental Toxicology, 2010, 25(4): 333-338.
[7] ZHANG Y N, WANG J Q, CHEN J W, et al. Phototransformation of 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in natural waters: Important roles of dissolved organic matter and chloride ion [J]. Environmental Science & Technology, 2018, 52(18): 10490-10499.
[8] LIU L Y, SALAMOVA A, VENIER M, et al. Trends in the levels of halogenated flame retardants in the Great Lakes atmosphere over the period 2005-2013 [J]. Environment International, 2016, 92-93: 442-449. doi: 10.1016/j.envint.2016.04.025
[9] VENKATESAN A K, HALDEN R U. Brominated flame retardants in US biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms [J]. Water Research, 2014, 55: 133-142. doi: 10.1016/j.watres.2014.02.021
[10] SMYTHE T A, BUTT C M, STAPLETON H M, et al. Impacts of unregulated novel brominated flame retardants on human liver thyroid deiodination and sulfotransferation [J]. Environmental Science & Technology, 2017, 51(12): 7245-7253.
[11] MÖLLER A, XIE Z Y, CAI M H, et al. Polybrominated diphenyl ethers vs alternate brominated flame retardants and dechloranes from East Asia to the Arctic [J]. Environmental Science & Technology, 2011, 45(16): 6793-6799.
[12] RUAN T, WANG Y W, WANG C, et al. Identification and evaluation of a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate in environmental matrices near a manufacturing plant in Southern China [J]. Environmental Science & Technology, 2009, 43(9): 3080-3086.
[13] LIU H H, HU Y J, LUO P, et al. Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: Association with urbanization and industrialization [J]. Environmental Science & Technology, 2014, 48(15): 8465-8473.
[14] VÉNISSEAU A, BICHON E, BROSSEAUD A, et al. Occurrence of legacy and novel brominated flame retardants in food and feed in France for the period 2014 to 2016 [J]. Chemosphere, 2018, 207: 497-506.
[15] SKLEDAR D G, TOMAŠIČ T, CARINO A, et al. New brominated flame retardants and their metabolites as activators of the pregnane X receptor [J]. Toxicology Letters, 2016, 259: 116-123. doi: 10.1016/j.toxlet.2016.08.005
[16] BEARR J S, STAPLETON H M, MITCHELMORE C L. Accumulation and DNA damage in fathead minnows (Pimephales promelas) exposed to 2 brominated flame-retardant mixtures, Firemaster® 550 and Firemaster® BZ-54 [J]. Environmental Toxicology and Chemistry, 2010, 29(3): 722-729. doi: 10.1002/etc.94
[17] GE L K, CHEN J W, WEI X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents [J]. Environmental Science & Technology, 2010, 44(7): 2400-2405.
[18] JANSSEN E M L, ERICKSON P R, MCNEILL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan [J]. Environmental Science & Technology, 2014, 48(9): 4916-4924.
[19] ZHANG Y, VECCHIO R D, BLOUGH N V. Investigating the mechanism of hydrogen peroxide photoproduction by humic substances [J]. Environmental Science & Technology, 2012, 46(21): 11836-11843.
[20] 孙国新, 王杰琼, 周成智, 等. 四溴双酚A在近岸海水中的光降解动力学研究 [J]. 环境化学, 2018, 37(8): 1683-1690. doi: 10.7524/j.issn.0254-6108.2018010602 SUN G X, WANG J Q, ZHOU C Z, et al. Photodegradation kinetics of tetrabromobisphenol A in coastal water [J]. Environmental Chemistry, 2018, 37(8): 1683-1690(in Chinese). doi: 10.7524/j.issn.0254-6108.2018010602
[21] GE L K, CHEN J W, QIAO X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: Mechanism and kinetics [J]. Environmental Science & Technology, 2009, 43(9): 3101-3107.
[22] ZHOU H X, YAN S W, MA J Z, et al. Development of novel chemical probes for examining triplet natural organic matter under solar illumination [J]. Environmental Science & Technology, 2017, 51(19): 11066-11074.
[23] ROSARIO-ORTIZ F L, CANONICA S. Probe compounds to assess the photochemical activity of dissolved organic matter [J]. Environmental Science & Technology, 2016, 50(23): 12532-12547.
[24] PORRAS J, FERNÁNDEZ J J, TORRES-PALMA R A, et al. Humic substances enhance chlorothalonil phototransformation via photoreduction and energy transfer [J]. Environmental Science & Technology, 2014, 48(4): 2218-2225.
[25] GUERARD J J, CHIN Y P, MASH H, et al. Photochemical fate of sulfadimethoxine in aquaculture waters [J]. Environmental Science & Technology, 2009, 43(22): 8587-8592.
[26] LI Y J, WEI X X, CHEN J W, et al. Photodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy [J]. Journal of Hazardous Materials, 2015, 290: 9-15. doi: 10.1016/j.jhazmat.2015.02.040
[27] CANONICA S, HELLRUNG B, MÜLLER P, et al. Aqueous oxidation of phenylurea herbicides by triplet aromatic ketones [J]. Environmental Science & Technology, 2006, 40(21): 6636-6641.
[28] CHEN Y, LI H, WANG Z P, et al. Photodegradation of selected β-blockers in aqueous fulvic acid solutions: Kinetics, mechanism, and product analysis [J]. Water Research, 2012, 46(9): 2965-2972. doi: 10.1016/j.watres.2012.03.025
[29] ZHANG Y, SIMON K A, ANDREW A A, et al. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors [J]. Environmental Science & Technology, 2014, 48(21): 12679-12688.
[30] HAN S K, SIK R H, MOTTEN A G, et al. Photosensitized oxidation of tetrabromobisphenol A by humic acid in aqueous solution [J]. Photochemistry and Photobiology, 2009, 85(6): 1299-1305. doi: 10.1111/j.1751-1097.2009.00608.x
[31] LEAL J F, ESTEVES V I, SANTOS E B H. BDE-209: Kinetic studies and effect of humic substances on photodegradation in water [J]. Environmental Science & Technology, 2013, 47(24): 14010-14017.
[32] WANG H L, WANG M, WANG H, et al. Aqueous photochemical degradation of BDE-153 in solutions with natural dissolved organic matter [J]. Chemosphere, 2016, 155: 367-374. doi: 10.1016/j.chemosphere.2016.04.071
[33] JIANG Z W, LINGHU W S, LI Y M, et al. Photoreductive debromination of decabromodiphenyl ether by pyruvate [J]. Catalysis Today, 2014, 224: 89-93. doi: 10.1016/j.cattod.2014.01.002
[34] COOPER W J, ZIKA R G. Photochemical formation of hydrogen-peroxide in surface and ground waters exposed to sunlight [J]. Science, 1983, 220(4598): 711-712. doi: 10.1126/science.220.4598.711
[35] WENK J, von GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical [J]. Environmental Science & Technology, 2011, 45(4): 1334-1340.
[36] CANONICA S, FREIBURGHAUS M. Electron-rich phenols for probing the photochemical reactivity of freshwaters [J]. Environmental Science & Technology, 2001, 35(4): 690-695.
[37] MCCABE A J, ARNOLD W A. Reactivity of triplet excited states of dissolved natural organic matter in stormflow from mixed-use watersheds [J]. Environmental Science & Technology, 2017, 51(17): 9718-9728.
[38] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[Z]. Revision A. 02. ed ed. Wallingford CT: Gaussian, Inc, 2009.
[39] ZHANG S Y, CHEN J W, QIAO X L, et al. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid [J]. Environmental Science & Technology, 2010, 44(19): 7484-7490.
[40] JIANG L, QIU Y L, LI Y. Effects analysis of substituent characteristics and solvents on the photodegradation of polybrominated diphenyl ethers [J]. Chemosphere, 2017, 185: 737-745. doi: 10.1016/j.chemosphere.2017.07.063
[41] KAVARNOS G J, TURRO N J. Photosensitization by reversible electron transfer: Theories, experimental evidence, and examples [J]. Chemical Reviews, 1986, 86(2): 401-449. doi: 10.1021/cr00072a005
[42] XIE Q, CHEN J W, SHAO J P, et al. Important role of reaction field in photodegradation of deca-bromodiphenyl ether: Theoretical and experimental investigations of solvent effects [J]. Chemosphere, 2009, 76(11): 1486-1490. doi: 10.1016/j.chemosphere.2009.06.054
[43] ZHANG Y N, CHEN J W, XIE Q, et al. Photochemical transformation of five novel brominated flame retardants: Kinetics and photoproducts [J]. Chemosphere, 2016, 150: 453-460. doi: 10.1016/j.chemosphere.2015.12.125
[44] SHARPLESS C M, BLOUGH N V. The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties [J]. Environmental Science: Processes & Impacts, 2014, 16(4): 654-671.
[45] MCNEILL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties [J]. Environmental Science: Processes & Impacts, 2016, 18(11): 1381-1399.
[46] VIONE D, MINELLA M, MAURINO V, et al. Indirect photochemistry in sunlit surface waters: Photoinduced production of reactive transient species [J]. Chemistry - A European Journal, 2014, 20(34): 10590-10606. doi: 10.1002/chem.201400413
[47] WENK J, EUSTIS S N, MCNEILL K, et al. Quenching of excited triplet states by dissolved natural organic matter [J]. Environmental Science & Technology, 2013, 47(22): 12802-12810.
[48] PFLUG N C, SCHMITT M, MCNEILL K. Development of N-cyclopropylanilines to probe the oxidative properties of triplet-state photosensitizers [J]. Environmental Science & Technology, 2019, 53(9): 4813-4822.
[49] CHEN Y, ZHANG X, FENG S X. Contribution of the excited triplet state of humic acid and superoxide radical anion to generation and elimination of phenoxyl radical [J]. Environmental Science & Technology, 2018, 52(15): 8283-8291.
[50] WENK J, CANONICA S. Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution [J]. Environmental Science & Technology, 2012, 46(10): 5455-5462.