[1] |
HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514(7521): 218-222. doi: 10.1038/nature13774
|
[2] |
WANG Y, ZHANG R Y, SARAVANAN R. Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis [J]. Nature Communications, 2014, 5: 3098. doi: 10.1038/ncomms4098
|
[3] |
曹军骥. 我国PM2.5污染现状与控制对策 [J]. 地球环境学报, 2012, 3(5): 1030-1036.
CAO J J. Pollution status and control strategies of PM2.5 in China [J]. Journal of Earth Environment, 2012, 3(5): 1030-1036(in Chinese).
|
[4] |
PRESTO A A, MIRACOLO M A, DONAHUE N M, et al. Secondary organic aerosol formation from high-NOx photo-oxidation of low volatility precursors: N-alkanes [J]. Environmental Science & Technology, 2010, 44(6): 2029-2034.
|
[5] |
ROBINSON A L, DONAHUE N M, SHRIVASTAVA M K, et al. Rethinking organic aerosols: Semivolatile emissions and photochemical aging [J]. Science , 2007, 315(5816): 1259-1262. doi: 10.1126/science.1133061
|
[6] |
ZHAO Y L, HENNIGAN C J, MAY A A, et al. Intermediate-volatility organic compounds: A large source of secondary organic aerosol [J]. Environmental Science & Technology, 2014, 48(23): 13743-13750.
|
[7] |
DONAHUE N M, ROBINSON A L, PANDIS S N. Atmospheric organic particulate matter: From smoke to secondary organic aerosol [J]. Atmospheric Environment, 2009, 43(1): 94-106. doi: 10.1016/j.atmosenv.2008.09.055
|
[8] |
WANG D S, HILDEBRANDT RUIZ L. Chlorine-initiated oxidation of n-alkanes under high NOx conditions: Insights into secondary organic aerosol composition and volatility using a FIGAERO-CIMS [J]. Atmospheric Chemistry and Physics Discussions, 2018: 1-26.
|
[9] |
SHI B, WANG W G, ZHOU L, et al. Atmospheric oxidation of C10~14 n-alkanes initiated by Cl atoms: Kinetics and mechanism [J]. Atmospheric Environment, 2020, 222: 117166. doi: 10.1016/j.atmosenv.2019.117166
|
[10] |
LOZA C L, CRAVEN J S, YEE L D, et al. Secondary organic aerosol yields of 12-carbon alkanes [J]. Atmospheric Chemistry and Physics, 2014, 14(3): 1423-1439. doi: 10.5194/acp-14-1423-2014
|
[11] |
ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420
|
[12] |
ZHAO Y L, NGUYEN N T, PRESTO A A, et al. Intermediate volatility organic compound emissions from on-road diesel vehicles: Chemical composition, emission factors, and estimated secondary organic aerosol production [J]. Environmental Science & Technology, 2015, 49(19): 11516-11526.
|
[13] |
CARTER W P L, LUO D M, MALKINA I L. Investigation of the ozone formation potentials of selected branched alkanes and mineral spirits samples[EB/OL]. [2021-03-29]
|
[14] |
ASCHMANN S M, ATKINSON R. Rate constants for the gas-phase reactions of OH radicals with E-7-tetradecene, 2-methyl-1-tridecene and the C(7)-C(14) 1-alkenes at 295+/- 1 K [J]. Physical Chemistry Chemical Physics: PCCP, 2008, 10(28): 4159-4164. doi: 10.1039/b803527j
|
[15] |
MASON S A, AREY J, ATKINSON R. Rate constants for the gas-phase reactions of NO3 radicals and O3 with C6−C14 1-alkenes and 2-methyl-1-alkenes at 296±2 K [J]. The Journal of Physical Chemistry A, 2009, 113(19): 5649-5656. doi: 10.1021/jp9014614
|
[16] |
DASHBOARD C C. CompTox Chemicals Dashboard [M]. U.S.; United States Environmental Protection Agency. 2020.
|
[17] |
ATKINSON R. A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds [J]. International Journal of Chemical Kinetics, 1987, 19(9): 799-828. doi: 10.1002/kin.550190903
|
[18] |
ASCHMANN S M, MARTIN P, TUAZON E C, et al. Kinetic and product studies of the reactions of selected glycol ethers with OH radicals [J]. Environmental Science & Technology, 2001, 35(20): 4080-4088.
|
[19] |
BRUBAKER W W, HITES R A. OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans [J]. The Journal of Physical Chemistry A, 1998, 102(6): 915-921. doi: 10.1021/jp9721199
|
[20] |
RIVA M, HEALY R M, FLAUD P M, et al. Kinetics of the gas-phase reactions of chlorine atoms with naphthalene, acenaphthene, and acenaphthylene [J]. The Journal of Physical Chemistry A, 2014, 118(20): 3535-3540. doi: 10.1021/jp5009434
|
[21] |
ATKINSON R, ASCHMANN S M, FITZ D R, et al. Rate constants for the gas-phase reactions of O3 with selected organics at 296 K [J]. International Journal of Chemical Kinetics, 1982, 14(1): 13-18. doi: 10.1002/kin.550140103
|
[22] |
ATKINSON R, AREY J. Mechanisms of the gas-phase reactions of aromatic hydrocarbons and pahs with oh and no 3 radicals [J]. Polycyclic Aromatic Compounds, 2007, 27(1): 15-40. doi: 10.1080/10406630601134243
|
[23] |
CHAN A W H, KAUTZMAN K, CHHABRA P, et al. Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs) [J]. Atmospheric Chemistry and Physics, 2009, 9(9): 3049-3060. doi: 10.5194/acp-9-3049-2009
|
[24] |
WANG L, AREY J, ATKINSON R. Reactions of chlorine atoms with a series of aromatic hydrocarbons [J]. Environmental Science & Technology, 2005, 39(14): 5302-5310.
|
[25] |
ATKINSON R, ASCHMANN S M. Kinetics of the gas-phase reactions of alkylnaphthalenes with O3, N2O5 and OH radicals at 298±2 K [J]. Atmospheric Environment (1967), 1987, 21(11): 2323-2326. doi: 10.1016/0004-6981(87)90367-2
|
[26] |
ATKINSON R, ASCHMANN S M. Kinetics of the reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with OH radicals and with O3 at (295±1) K [J]. International Journal of Chemical Kinetics, 1986, 18(5): 569-573. doi: 10.1002/kin.550180507
|
[27] |
ZHOU S M, WENGER J C. Kinetics and products of the gas-phase reactions of acenaphthylene with hydroxyl radicals, nitrate radicals and ozone [J]. Atmospheric Environment, 2013, 75: 103-112. doi: 10.1016/j.atmosenv.2013.04.049
|
[28] |
ZHOU S M, WENGER J C. Kinetics and products of the gas-phase reactions of acenaphthene with hydroxyl radicals, nitrate radicals and ozone [J]. Atmospheric Environment, 2013, 72: 97-104. doi: 10.1016/j.atmosenv.2013.02.044
|
[29] |
KEYTE I J, HARRISON R M, LAMMEL G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a review [J]. Chemical Society Reviews, 2013, 42(24): 9333. doi: 10.1039/c3cs60147a
|
[30] |
ZHAO N, SHI X L, XU F, et al. Theoretical investigation on the mechanism of NO3 radical-initiated atmospheric reactions of phenanthrene [J]. Journal of Molecular Structure, 2017, 1139: 275-281. doi: 10.1016/j.molstruc.2017.03.063
|
[31] |
ASCHMANN S M, AREY J, ATKINSON R. Rate constants for the reactions of OH radicals with 1,2,4,5-tetramethylbenzene, pentamethylbenzene, 2,4,5-trimethylbenzaldehyde, 2,4,5-trimethylphenol, and 3-methyl-3-hexene-2,5-Dione and products of OH+1,2,4,5-tetramethylbenzene [J]. The Journal of Physical Chemistry A, 2013, 117(12): 2556-2568. doi: 10.1021/jp400323n
|
[32] |
SMITH A M, RIGLER E, KWOK E S C, et al. Kinetics and products of the gas-phase reactions of 6-methyl-5-hepten-2-one andtrans-cinnamaldehyde with OH and NO3 Radicals and O3 at (296±2) K [J]. Environmental Science & Technology, 1996, 30(5): 1781-1785.
|
[33] |
BEJAN I, BARNES I, OLARIU R, et al. Investigations on the gas-phase photolysis and OH radical kinetics of methyl-2-nitrophenols [J]. Physical Chemistry Chemical Physics, 2007, 9(42): 5686-5692. doi: 10.1039/b709464g
|
[34] |
BEJAN I, DUNCIANU M, OLARIU R, et al. Kinetic study of the gas-phase reactions of chlorine atoms with 2-chlorophenol, 2-nitrophenol, and four methyl-2-nitrophenol isomers [J]. The Journal of Physical Chemistry A, 2015, 119(20): 4735-4745. doi: 10.1021/acs.jpca.5b02392
|
[35] |
ATKINSON R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions [J]. Chemical Reviews, 1986, 86(1): 69-201. doi: 10.1021/cr00071a004
|
[36] |
LAURAGUAIS A, EL ZEIN A, COEUR C, et al. Kinetic study of the gas-phase reactions of nitrate radicals with methoxyphenol compounds: Experimental and theoretical approaches [J]. The Journal of Physical Chemistry. A, 2016, 120(17): 2691-2699. doi: 10.1021/acs.jpca.6b02729
|
[37] |
OLARIU R I, BARNES I, BECKER K H, et al. Rate coefficients for the gas-phase reaction of OH radicals with selected dihydroxybenzenes and benzoquinones [J]. International Journal of Chemical Kinetics, 2000, 32(11): 696-702. doi: 10.1002/1097-4601(2000)32:11<696::AID-KIN5>3.0.CO;2-N
|
[38] |
BEJAN I B I, OLARIU R, WENGER J C. A kinetic study of gas phase reactions of chlorine atoms with 1, 2-benzenediols and benzoquinones. [J]. 21st International Symposium on Gas Kinetics , 2010, 6: 12.
|
[39] |
ZEIN A E, COEUR C, OBEID E, et al. Reaction kinetics of catechol (1,2-benzenediol) and guaiacol (2-methoxyphenol) with ozone [J]. The Journal of Physical Chemistry A, 2015, 119(26): 6759-6765. doi: 10.1021/acs.jpca.5b00174
|
[40] |
OLARIU R I, BEJAN I, BARNES I, et al. Rate coefficients for the gas-phase reaction of NO3 radicals with selected dihydroxybenzenes [J]. International Journal of Chemical Kinetics, 2004, 36(11): 577-583. doi: 10.1002/kin.20029
|
[41] |
COEUR-TOURNEUR C, CASSEZ A, WENGER J C. Rate coefficients for the gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related compounds [J]. The Journal of Physical Chemistry A, 2010, 114(43): 11645-11650. doi: 10.1021/jp1071023
|
[42] |
LAURAGUAIS A, BEJAN I, BARNES I, et al. Rate coefficients for the gas-phase reaction of chlorine atoms with a series of methoxylated aromatic compounds [J]. The Journal of Physical Chemistry A, 2014, 118(10): 1777-1784. doi: 10.1021/jp4114877
|
[43] |
LAURAGUAIS A, COEUR-TOURNEUR C, CASSEZ A, et al. Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2,6-dimethoxyphenol) [J]. Atmospheric Environment, 2012, 55: 43-48. doi: 10.1016/j.atmosenv.2012.02.027
|
[44] |
KWOK E S C, ATKINSON R, AREY J. Kinetics of the gas-phase reactions of dibenzothiophene with OH radicals, NO3 radicals, and O3 [J]. Polycyclic Aromatic Compounds, 1999, 13(3): 175-189. doi: 10.1080/10406639908020562
|
[45] |
ATKINSON R, TUAZON E C, AREY J, et al. Atmospheric and indoor chemistry of gas-phase indole, quinoline, and isoquinoline [J]. Atmospheric Environment, 1995, 29(23): 3423-3432. doi: 10.1016/1352-2310(95)00103-6
|
[46] |
LI Y F, SUN Y H, ZHANG Q Z. Theoretical and kinetic properties of OH radical-initiated oxidation of galaxolide in the atmosphere [J]. The Journal of Physical Chemistry A, 2018, 122(47): 9151-9159. doi: 10.1021/acs.jpca.8b07456
|
[47] |
KWOK E S C, AREY J, ATKINSON R. Gas-phase atmospheric chemistry of dibenzo-p-dioxin and dibenzofuran [J]. Environmental Science & Technology, 1994, 28(3): 528-533.
|
[48] |
SAFRON A, STRANDELL M, KIERKEGAARD A, et al. Rate constants and activation energies for gas-phase reactions of three cyclic volatile methyl siloxanes with the hydroxyl radical [J]. International Journal of Chemical Kinetics, 2015, 47(7): 420-428. doi: 10.1002/kin.20919
|
[49] |
PUBCHEM. PubChem [M]. U.S.; National Library of Medicine National Center for Biotechnology Information. 2020.
|
[50] |
GOSS K U, SCHWARZENBACH R P. Empirical prediction of heats of vaporization and heats of adsorption of organic compounds [J]. Environmental Science & Technology, 1999, 33(19): 3390-3393.
|
[51] |
TAN X, YUAN B, WANG C, et al. Progress in measurements of semi-/intermediate-volatile organic compounds in ambient air [J]. China Environmental Science, 2020, 40(10): 4224-36.
|
[52] |
唐荣志, 王辉, 刘莹, 等. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献 [J]. 化学进展, 2019, 31(1): 180-190.
TANG R Z, WANG H, LIU Y, et al. Constituents of atmospheric semi-volatile and intermediate volatility organic compounds and their contribution to organic aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190(in Chinese).
|
[53] |
NOZIÈRE B, KALBERER M, CLAEYS M, et al. The molecular identification of organic compounds in the atmosphere: State of the art and challenges [J]. Chemical Reviews, 2015, 115(10): 3919-3983. doi: 10.1021/cr5003485
|
[54] |
KIM J W, KIM Y M, MOON H M, et al. Comparative study of thermal desorption and solvent extraction-gas chromatography-mass spectrometric analysis for the quantification of phthalates in polymers [J]. Journal of Chromatography A, 2016, 1451: 33-40. doi: 10.1016/j.chroma.2016.05.014
|
[55] |
ALAM M S, WEST C E, SCARLETT A G, et al. Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter [J]. Atmospheric Environment, 2013, 65: 101-111. doi: 10.1016/j.atmosenv.2012.10.014
|
[56] |
ALAM M S, HARRISON R M. Recent advances in the application of 2-dimensional gas chromatography with soft and hard ionisation time-of-flight mass spectrometry in environmental analysis [J]. Chemical Science, 2016, 7(7): 3968-3977. doi: 10.1039/C6SC00465B
|
[57] |
WILLIAMS B J, GOLDSTEIN A H, KREISBERG N M, et al. An in situ instrument for speciated organic composition of atmospheric aerosols: Thermal desorption aerosol GC/MS-FID (TAG) [J]. Aerosol Science and Technology, 2006, 40(8): 627-638. doi: 10.1080/02786820600754631
|
[58] |
WORTON D R, KREISBERG N M, ISAACMAN G, et al. Thermal desorption comprehensive two-dimensional gas chromatography: An improved instrument for in situ speciated measurements of organic aerosols [J]. Aerosol Science and Technology, 2012, 46(4): 380-393. doi: 10.1080/02786826.2011.634452
|
[59] |
ZHAO Y L, KREISBERG N M, WORTON D R, et al. Development of an in situ thermal desorption gas chromatography instrument for quantifying atmospheric semi-volatile organic compounds [J]. Aerosol Science and Technology, 2013, 47(3): 258-266. doi: 10.1080/02786826.2012.747673
|
[60] |
ZHAO R. The recent development and application of chemical ionization mass spectrometry in atmospheric chemistry[EB/OL]. 2018
|
[61] |
YATAVELLI R L N, LOPEZ-HILFIKER F, WARGO J D, et al. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species [J]. Aerosol Science and Technology, 2012, 46(12): 1313-1327. doi: 10.1080/02786826.2012.712236
|
[62] |
LOPEZ-HILFIKER F D, MOHR C, EHN M, et al. A novel method for online analysis of gas and particle composition: Description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO) [J]. Atmospheric Measurement Techniques, 2014, 7(4): 983-1001. doi: 10.5194/amt-7-983-2014
|
[63] |
WANG C M, WU C H, WANG S H, et al. Measurements of higher alkanes using NO+PTR-ToF-MS: Significant contributions of higher alkanes to secondary organic aerosols in China[EB/OL]. 2020
|
[64] |
EICHLER P, MÜLLER M, D'ANNA B, et al. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter [J]. Atmospheric Measurement Techniques, 2015, 8(3): 1353-1360. doi: 10.5194/amt-8-1353-2015
|
[65] |
CHEN Y C, LEE W J, UANG S N, et al. Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment [J]. Atmospheric Environment, 2006, 40(39): 7589-7597. doi: 10.1016/j.atmosenv.2006.06.054
|
[66] |
COOPER D A. Exhaust emissions from ships at berth [J]. Atmospheric Environment, 2003, 37(27): 3817-3830. doi: 10.1016/S1352-2310(03)00446-1
|
[67] |
KANG M J, REN L J, REN H, et al. Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes [J]. Environmental Pollution, 2018, 243: 1579-1587. doi: 10.1016/j.envpol.2018.09.118
|
[68] |
GENTNER D R, JATHAR S H, GORDON T D, et al. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions [J]. Environmental Science & Technology, 2017, 51(3): 1074-1093.
|
[69] |
JATHAR S H, FRIEDMAN B, GALANG A A, et al. Linking load, fuel, and emission controls to photochemical production of secondary organic aerosol from a diesel engine [J]. Environmental Science & Technology, 2017, 51(3): 1377-1386.
|
[70] |
CROSS E S, HUNTER J F, CARRASQUILLO A J, et al. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft [J]. Atmospheric Chemistry and Physics, 2013, 13(3): 8065-8100.
|
[71] |
LOU H J, HAO Y J, ZHANG W W, et al. Emission of intermediate volatility organic compounds from a ship main engine burning heavy fuel oil [J]. Journal of Environmental Sciences, 2019, 84: 197-204. doi: 10.1016/j.jes.2019.04.029
|
[72] |
TANG R, LU Q, GUO S, et al. Measurement report: Distinct emissions and volatility distribution of intermediate-volatility organic compounds from on-road Chinese gasoline vehicles: Implication of high secondary organic aerosol formation potential [J]. Atmos Chem Phys, 2021, 21(4): 2569-2583. doi: 10.5194/acp-21-2569-2021
|
[73] |
王倩, 黄凌, 王杨君, 等. 长江三角洲2017年机动车IVOCs排放清单构建及其对SOA的生成影响 [J]. 环境科学, 2020, 41(1): 125-132.
WANG Q, HUANG L, WANG Y J, et al. Emission inventory of intermediate volatility organic compounds from vehicles in the Yangtze River Delta in 2017 and the impact on the formation potential of secondary organic aerosols [J]. Environmental Science, 2020, 41(1): 125-132(in Chinese).
|
[74] |
HUANG C, HU Q Y, LI Y J, et al. Intermediate volatility organic compound emissions from a large cargo vessel operated under real-world conditions [J]. Environmental Science & Technology, 2018, 52(21): 12934-12942.
|
[75] |
AGRAWAL H, SAWANT A A, JANSEN K, et al. Characterization of chemical and particulate emissions from aircraft engines [J]. Atmospheric Environment, 2008, 42(18): 4380-4392. doi: 10.1016/j.atmosenv.2008.01.069
|
[76] |
SIMONEIT B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0
|
[77] |
MAZZOLENI L R, ZIELINSKA B, MOOSMÜLLER H. Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion [J]. Environmental Science & Technology, 2007, 41(7): 2115-2122.
|
[78] |
MCDONALD B C, de GOUW J A, GILMAN J B, et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions [J]. Science, 2018, 359(6377): 760-764. doi: 10.1126/science.aaq0524
|
[79] |
LYU Y, XU T T, YANG X, et al. Seasonal contributions to size-resolved n-alkanes (C8—C40) in the Shanghai atmosphere from regional anthropogenic activities and terrestrial plant waxes [J]. Science of the Total Environment, 2017, 579: 1918-1928. doi: 10.1016/j.scitotenv.2016.11.201
|
[80] |
FEILBERG A, LIU D Z, ADAMSEN A P S, et al. Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry [J]. Environmental Science & Technology, 2010, 44(15): 5894-5900.
|
[81] |
MIYAZAKI Y, KAWAMURA K, SAWANO M. Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer [J]. Journal of Geophysical Research Atmospheres, 2010, 115(D23): D23210. doi: 10.1029/2010JD014439
|
[82] |
CHAN A W H, KREISBERG N M, HOHAUS T, et al. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011 [J]. Atmospheric Chemistry and Physics, 2016, 16(2): 1187-1205. doi: 10.5194/acp-16-1187-2016
|
[83] |
XU R X, ALAM M S, STARK C, et al. Composition and emission factors of traffic- emitted intermediate volatility and semi-volatile hydrocarbons (C10-C36) at a street canyon and urban background sites in central London, UK [J]. Atmospheric Environment, 2020, 231: 117448. doi: 10.1016/j.atmosenv.2020.117448
|
[84] |
WU D H, LIU H X, WANG Z G, et al. Atmospheric concentrations and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in typical urban-rural fringe of Wuhan-Ezhou region, central China [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1): 96-106. doi: 10.1007/s00128-019-02743-6
|
[85] |
FANG H, LUO S L, HUANG X Q, et al. Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta region: Sources and contributions to secondary organic aerosol [J]. Atmospheric Environment, 2021, 252: 118295. doi: 10.1016/j.atmosenv.2021.118295
|
[86] |
MA W L, LI Y F, QI H, et al. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China [J]. Chemosphere, 2010, 79(4): 441-447. doi: 10.1016/j.chemosphere.2010.01.048
|
[87] |
LIU Y N, TAO S, YANG Y F, et al. Inhalation exposure of traffic police officers to polycyclic aromatic hydrocarbons (PAHs) during the winter in Beijing, China [J]. Science of the Total Environment, 2007, 383(1/2/3): 98-105.
|
[88] |
GONZÁLEZ-GAYA B, FERNÁNDEZ-PINOS M C, MORALES L, et al. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons [J]. Nature Geoscience, 2016, 9(6): 438-442. doi: 10.1038/ngeo2714
|
[89] |
WANG X Y, LI Q B, LUO Y M, et al. Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China [J]. Environmental Monitoring and Assessment, 2010, 165(1/2/3/4): 295-305.
|
[90] |
LI M, WANG X F, LU C Y, et al. Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan, China [J]. Science of the Total Environment, 2020, 714: 136760. doi: 10.1016/j.scitotenv.2020.136760
|
[91] |
HAWTHORNE S B, MILLER D J, LANGENFELD J J, et al. PM-10 high-volume collection and quantitation of semi- and nonvolatile phenols, methoxylated phenols, alkanes, and polycyclic aromatic hydrocarbons from winter urban air and their relationship to wood smoke emissions [J]. Environmental Science & Technology, 1992, 26(11): 2251-2262.
|
[92] |
SOFUOGLU A, KIYMET N, KAVCAR P, et al. Polycyclic and nitro musks in indoor air: A primary school classroom and a women's sport center [J]. Indoor Air, 2010, 20(6): 515-522. doi: 10.1111/j.1600-0668.2010.00674.x
|
[93] |
PANKOW J F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere [J]. Atmospheric Environment, 1994, 28(2): 185-188. doi: 10.1016/1352-2310(94)90093-0
|
[94] |
ESEN F, TASDEMIR Y, BOZKURT Y M. Assessments of seasonal trend, gas-particle partitioning and deposition flux of polycyclic aromatic hydrocarbons at a semi-rural site [J]. Journal of Environmental Science and Health, Part A, 2019, 54(6): 582-591. doi: 10.1080/10934529.2019.1574158
|
[95] |
AKYÜZ M, ÇABUK H. Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey [J]. Science of the Total Environment, 2010, 408(22): 5550-5558. doi: 10.1016/j.scitotenv.2010.07.063
|
[96] |
MANDALAKIS M, TSAPAKIS M, TSOGA A, et al. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece) [J]. Atmospheric Environment, 2002, 36(25): 4023-4035. doi: 10.1016/S1352-2310(02)00362-X
|
[97] |
GOSS K U, SCHWARZENBACH R P. Gas/solid and gas/liquid partitioning of organic compounds: Critical evaluation of the interpretation of equilibrium constants [J]. Environmental Science & Technology, 1998, 32(14): 2025-2032.
|
[98] |
LOHMANN R, HARNER T, THOMAS G O, et al. A comparative study of the gas-particle partitioning of PCDD/fs, PCBs, and PAHs [J]. Environmental Science & Technology, 2000, 34(23): 4943-4951.
|
[99] |
YANG J, XU W L, CHENG H Y. Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China [J]. Atmosphere, 2018, 9(2): 63. doi: 10.3390/atmos9020063
|
[100] |
WONG F, ROBSON M, MELYMUK L, et al. Urban sources of synthetic musk compounds to the environment [J]. Environmental Science. Processes & Impacts, 2019, 21(1): 74-88.
|
[101] |
LIU W, ZHAO J, XU S, et al. Concentrations, sources, and potential human health risks of PCDD/fs, dl-PCBs, and PAHs in rural atmosphere around chemical plants in Jiangsu Province, China [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(6): 846-851. doi: 10.1007/s00128-020-02864-3
|
[102] |
CHEN Y, SHEN G, HUANG Y, et al. Household air pollution and personal exposure risk of polycyclic aromatic hydrocarbons among rural residents in Shanxi, China [J]. Indoor Air, 2016, 26(2): 246-258. doi: 10.1111/ina.12204
|
[103] |
YEE L D, ISAACMAN-VANWERTZ G, WERNIS R A, et al. Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons [J]. Atmospheric Chemistry and Physics, 2018, 18(14): 10433-10457. doi: 10.5194/acp-18-10433-2018
|
[104] |
SINGH D K, KAWAMURA K, YANASE A, et al. Distributions of polycyclic aromatic hydrocarbons, aromatic ketones, carboxylic acids, and trace metals in arctic aerosols: Long-range atmospheric transport, photochemical degradation/production at polar sunrise [J]. Environmental Science & Technology, 2017, 51(16): 8992-9004.
|
[105] |
ZHAO Y L, NGUYEN N T, PRESTO A A, et al. Intermediate volatility organic compound emissions from on-road gasoline vehicles and small off-road gasoline engines [J]. Environmental Science & Technology, 2016, 50(8): 4554-4563.
|
[106] |
ALAM M S, ZERAATI-REZAEI S, LIANG Z R, et al. Mapping and quantifying isomer sets of hydrocarbons (≥C12) in diesel exhaust, lubricating oil and diesel fuel samples using GC×GC-ToF-MS [J]. Atmospheric Measurement Techniques, 2018, 11(5): 3047-3058. doi: 10.5194/amt-11-3047-2018
|
[107] |
SU P H, HAO Y J, QIAN Z, et al. Emissions of intermediate volatility organic compound from waste cooking oil biodiesel and marine gas oil on a ship auxiliary engine [J]. Journal of Environmental Sciences, 2020, 91: 262-270. doi: 10.1016/j.jes.2020.01.008
|
[108] |
LI C T, MI H H, LEE W J, et al. PAH emission from the industrial boilers [J]. Journal of Hazardous Materials, 1999, 69(1): 1-11. doi: 10.1016/S0304-3894(99)00097-7
|
[109] |
CAI S Y, ZHU L, WANG S X, et al. Time-resolved intermediate-volatility and semivolatile organic compound emissions from household coal combustion in Northern China [J]. Environmental Science & Technology, 2019, 53(15): 9269-9278.
|
[110] |
HATCH L E, RIVAS-UBACH A, JEN C N, et al. Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks and two-dimensional gas chromatography [J]. Atmospheric Chemistry and Physics, 2018, 18(24): 17801-17817. doi: 10.5194/acp-18-17801-2018
|
[111] |
DHAMMAPALA R, CLAIBORN C, SIMPSON C, et al. Emission factors from wheat and Kentucky bluegrass stubble burning: Comparison of field and simulated burn experiments [J]. Atmospheric Environment, 2007, 41(7): 1512-1520. doi: 10.1016/j.atmosenv.2006.10.008
|
[112] |
AGARWAL R, SHUKLA K, KUMAR S, et al. Chemical composition of waste burning organic aerosols at landfill and urban sites in Delhi [J]. Atmospheric Pollution Research, 2020, 11(3): 554-565. doi: 10.1016/j.apr.2019.12.004
|
[113] |
GENTNER D R, WORTON D R, ISAACMAN G, et al. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production [J]. Environmental Science & Technology, 2013, 47(20): 11837-11848.
|
[114] |
LI W H, LI L J, CHEN C L, et al. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions [J]. Atmospheric Environment, 2018, 178: 109-117. doi: 10.1016/j.atmosenv.2017.12.019
|
[115] |
ATKINSON R. Gas-phase tropospheric chemistry of volatile organic compounds: 1. alkanes and alkenes [J]. Journal of Physical and Chemical Reference Data, 1997, 26(2): 215-290. doi: 10.1063/1.556012
|
[116] |
YEE L D, CRAVEN J S, LOZA C L, et al. Effect of chemical structure on secondary organic aerosol formation from C12 alkanes [J]. Atmospheric Chemistry and Physics, 2013, 13(21): 11121-11140. doi: 10.5194/acp-13-11121-2013
|
[117] |
LIM Y B, ZIEMANN P J. Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx [J]. Environmental Science & Technology, 2009, 43(7): 2328-2334.
|
[118] |
LAMBE A T, ONASCH T B, CROASDALE D R, et al. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors [J]. Environmental Science & Technology, 2012, 46(10): 5430-5437.
|
[119] |
LIM Y B, ZIEMANN P J. Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx [J]. Environmental Science & Technology, 2005, 39(23): 9229-9236.
|
[120] |
JORDAN C E, ZIEMANN P J, GRIFFIN R J, et al. Modeling SOA formation from OH reactions with C8—C17 n-alkanes [J]. Atmospheric Environment, 2008, 42(34): 8015-8026. doi: 10.1016/j.atmosenv.2008.06.017
|
[121] |
TKACIK D S, PRESTO A A, DONAHUE N M, et al. Secondary organic aerosol formation from intermediate-volatility organic compounds: Cyclic, linear, and branched alkanes [J]. Environmental Science & Technology, 2012, 46(16): 8773-8781.
|
[122] |
LAMKADDAM H, GRATIEN A, PANGUI E, et al. High-NOx photooxidation of n-dodecane: Temperature dependence of SOA formation [J]. Environmental Science & Technology, 2017, 51(1): 192-201.
|
[123] |
LI J L, LI K, WANG W G, et al. Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions [J]. Science of the Total Environment, 2017, 579: 1699-1705. doi: 10.1016/j.scitotenv.2016.11.189
|
[124] |
LI J L, WANG W G, LI K, et al. Temperature effects on optical properties and chemical composition of secondary organic aerosol derived from n-dodecane [J]. Atmospheric Chemistry and Physics, 2020, 20(13): 8123-8137. doi: 10.5194/acp-20-8123-2020
|
[125] |
WERT B P, TRAINER M, FRIED A, et al. Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000 [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D3): 4014. doi: 10.1029/2002jd002502
|
[126] |
ZIEMANN P J. Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes [J]. International Reviews in Physical Chemistry, 2011, 30(2): 161-195. doi: 10.1080/0144235X.2010.550728
|
[127] |
MATSUNAGA A, DOCHERTY K S, LIM Y B, et al. Composition and yields of secondary organic aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NOx: Modeling and measurements [J]. Atmospheric Environment, 2009, 43(6): 1349-1357. doi: 10.1016/j.atmosenv.2008.12.004
|
[128] |
CHACON-MADRID H J, HENRY K M, DONAHUE N M. Photo-oxidation of pinonaldehyde at low NOx: From chemistry to organic aerosol formation [J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3227-3236. doi: 10.5194/acp-13-3227-2013
|
[129] |
CHACON-MADRID H J, DONAHUE N M. Fragmentation vs. functionalization: Chemical aging and organic aerosol formation [J]. Atmospheric Chemistry and Physics, 2011, 11(20): 10553-10563. doi: 10.5194/acp-11-10553-2011
|
[130] |
WANG L, ATKINSON R, AREY J. Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1- and C2-alkylnaphthalenes [J]. Environmental Science & Technology, 2007, 41(8): 2803-2810.
|
[131] |
RIVA M, HEALY R M, FLAUD P M, et al. Gas- and particle-phase products from the chlorine-initiated oxidation of polycyclic aromatic hydrocarbons [J]. The Journal of Physical Chemistry A, 2015, 119(45): 11170-11181. doi: 10.1021/acs.jpca.5b04610
|
[132] |
KAUTZMAN K E, SURRATT J D, CHAN M N, et al. Chemical composition of gas- and aerosol-phase products from the photooxidation of naphthalene [J]. The Journal of Physical Chemistry A, 2010, 114(2): 913-934. doi: 10.1021/jp908530s
|
[133] |
SHAKYA K M, GRIFFIN R J. Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 2010, 44(21): 8134-8139.
|
[134] |
CHEN C L, KACARAB M, TANG P, et al. SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation [J]. Atmospheric Environment, 2016, 131: 424-433. doi: 10.1016/j.atmosenv.2016.02.007
|
[135] |
CHEN C L, LI L J, TANG P, et al. SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures [J]. Atmospheric Environment, 2018, 180: 256-264. doi: 10.1016/j.atmosenv.2018.02.051
|
[136] |
RIVA M, ROBINSON E S, PERRAUDIN E, et al. Photochemical aging of secondary organic aerosols generated from the photooxidation of polycyclic aromatic hydrocarbons in the gas-phase [J]. Environmental Science & Technology, 2015, 49(9): 5407-5416.
|
[137] |
XU C, WANG L. Atmospheric oxidation mechanism of phenol initiated by OH radical [J]. The Journal of Physical Chemistry A, 2013, 117(11): 2358-2364. doi: 10.1021/jp308856b
|
[138] |
LAURAGUAIS A, COEUR-TOURNEUR C, CASSEZ A, et al. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products [J]. Atmospheric Environment, 2014, 86: 155-163. doi: 10.1016/j.atmosenv.2013.11.074
|
[139] |
YEE L D, KAUTZMAN K E, LOZA C L, et al. Secondary organic aerosol formation from biomass burning intermediates: Phenol and methoxyphenols [J]. Atmospheric Chemistry and Physics, 2013, 13(16): 8019-8043. doi: 10.5194/acp-13-8019-2013
|
[140] |
LIU C G, CHEN T Z, LIU Y C, et al. Enhancement of secondary organic aerosol formation and its oxidation state by SO2 during photooxidation of 2-methoxyphenol [J]. Atmospheric Chemistry and Physics, 2019, 19(4): 2687-2700. doi: 10.5194/acp-19-2687-2019
|
[141] |
LIU C G, LIU J, LIU Y C, et al. Secondary organic aerosol formation from the OH-initiated oxidation of guaiacol under different experimental conditions [J]. Atmospheric Environment, 2019, 207: 30-37. doi: 10.1016/j.atmosenv.2019.03.021
|
[142] |
NAKAO S, CLARK C, TANG P, et al. Secondary organic aerosol formation from phenolic compounds in the absence of NOx [J]. Atmospheric Chemistry and Physics, 2011, 11(20): 10649-10660. doi: 10.5194/acp-11-10649-2011
|
[143] |
LIU C G, LIU Y C, CHEN T Z, et al. Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with hydroxyl radicals [J]. Atmospheric Chemistry and Physics, 2019, 19(3): 2001-2013. doi: 10.5194/acp-19-2001-2019
|
[144] |
SUN Y L, ZHANG Q, ANASTASIO C, et al. Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry [J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4809-4822. doi: 10.5194/acp-10-4809-2010
|
[145] |
KITANOVSKI Z, ČUSAK A, GRGIĆ I, et al. Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol [J]. Atmospheric Measurement Techniques, 2014, 7(8): 2457-2470. doi: 10.5194/amt-7-2457-2014
|
[146] |
KITANOVSKI Z, GRGIĆ I, de VERMEYLEN R, et al. Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter [J]. Journal of Chromatography A, 2012, 1268: 35-43. doi: 10.1016/j.chroma.2012.10.021
|
[147] |
YU L, SMITH J, LASKIN A, et al. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical [J]. Atmospheric Chemistry and Physics, 2014, 14(24): 13801-13816. doi: 10.5194/acp-14-13801-2014
|
[148] |
MONTOYA-AGUILERA J, HORNE J R, HINKS M L, et al. Secondary organic aerosol from atmospheric photooxidation of indole [J]. Atmospheric Chemistry and Physics, 2017, 17(18): 11605-11621. doi: 10.5194/acp-17-11605-2017
|
[149] |
FEILBERG A, HOLCMAN J, NIELSEN T, et al. Atmospheric oxidation of N-PAC and nitro substituted N-PAC in water droplets [J]. Polycyclic Aromatic Compounds, 1999, 14(1/2/3/4): 137-150.
|
[150] |
LIU Y, LU J C, CHEN Y F, et al. Aqueous-phase production of secondary organic aerosols from oxidation of dibenzothiophene (DBT) [J]. Atmosphere, 2020, 11(2): 151. doi: 10.3390/atmos11020151
|
[151] |
HODZIC A, KASIBHATLA P S, JO D S, et al. Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime [J]. Atmospheric Chemistry and Physics, 2016, 16(12): 7917-7941. doi: 10.5194/acp-16-7917-2016
|
[152] |
ELURI S, CAPPA C D, FRIEDMAN B, et al. Modeling the formation and composition of secondary organic aerosol from diesel exhaust using parameterized and semi-explicit chemistry and thermodynamic models [J]. Atmospheric Chemistry and Physics, 2018, 18(19): 13813-13838. doi: 10.5194/acp-18-13813-2018
|
[153] |
ZHAO B, WANG S X, DONAHUE N M, et al. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China [J]. Scientific Reports, 2016, 6(1): 1-10. doi: 10.1038/s41598-016-0001-8
|
[154] |
LI J, HAN Z W, LI J W, et al. The formation and evolution of secondary organic aerosol during haze events in Beijing in wintertime [J]. Science of the Total Environment, 2020, 703: 134937. doi: 10.1016/j.scitotenv.2019.134937
|
[155] |
YANG W Y, LI J, WANG M, et al. A case study of investigating secondary organic aerosol formation pathways in Beijing using an observation-based SOA box model [J]. Aerosol and Air Quality Research, 2018, 18(7): 1606-1616. doi: 10.4209/aaqr.2017.10.0415
|
[156] |
YAO T, LI Y, GAO J H, et al. Source apportionment of secondary organic aerosols in the Pearl River Delta region: Contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols [J]. Atmospheric Environment, 2020, 222: 117111. doi: 10.1016/j.atmosenv.2019.117111
|
[157] |
WU L Q, WANG X M, LU S H, et al. Emission inventory of semi-volatile and intermediate-volatility organic compounds and their effects on secondary organic aerosol over the Pearl River Delta region [J]. Atmospheric Chemistry and Physics, 2019, 19(12): 8141-8161. doi: 10.5194/acp-19-8141-2019
|
[158] |
PRINN R G, WEISS R F, MILLER B R, et al. Atmospheric trends and lifetime of CH3CCI3 and global OH concentrations [J]. Science, 1995, 269(5221): 187-192. doi: 10.1126/science.269.5221.187
|
[159] |
HOSSAINI R, CHIPPERFIELD M P, SAIZ-LOPEZ A, et al. A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(23): 14271-14297. doi: 10.1002/2016JD025756
|
[160] |
WINGENTER O W, KUBO M K, BLAKE N J, et al. Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights [J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D2): 4331-4340. doi: 10.1029/95JD02457
|
[161] |
LIN C Y C, JACOB D J, FIORE A M. Trends in exceedances of the ozone air quality standard in the continental United States, 1980-1998 [J]. Atmospheric Environment, 2001, 35(19): 3217-3228. doi: 10.1016/S1352-2310(01)00152-2
|
[162] |
SHU Y H, ATKINSON R. Atmospheric lifetimes and fates of a series of sesquiterpenes [J]. Journal of Geophysical Research Atmospheres, 1995, 100(D4): 7275-7281. doi: 10.1029/95JD00368
|