[1] 熊美昱, 夏雨琪, 彭程. 典型类雌激素的降解方法及其影响因素研究进展 [J]. 环境化学, 2020, 39(3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303 XIONG M Y, XIA Y Q, PENG C. Degradation methods and influence factors of typical estrogen-like substances [J]. Environmental Chemistry, 2020, 39(3): 610-623(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101303
[2] COVACI A, VOORSPOELS S, ABDALLAH M A E, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives [J]. Journal of Chromatography A, 2009, 1216(3): 346-363. doi: 10.1016/j.chroma.2008.08.035
[3] 孙国新, 王杰琼, 周成智, 等. 四溴双酚A在近岸海水中的光降解动力学研究 [J]. 环境化学, 2018, 37(8): 1683-1690. doi: 10.7524/j.issn.0254-6108.2018010602 SUN G X, WANG J Q, ZHOU C Z, et al. Photodegradation kinetics of tetrabromobisphenol A in coastal water [J]. Environmental Chemistry, 2018, 37(8): 1683-1690(in Chinese). doi: 10.7524/j.issn.0254-6108.2018010602
[4] 吴玉丽, 肖羽堂, 王冠平, 等. 多溴联苯醚、六溴环十二烷和四溴双酚A在环境中污染现状的研究进展 [J]. 环境化学, 2021, 40(2): 384-403. WU Y L, XIAO Y T, WANG G P, et al. Research progress on status of environmental pollutions of polybrominated diphenyl ethers, hexabromocyclodocane, and tetrabromobisphenol A: A review [J]. Environmental Chemistry, 2021, 40(2): 384-403(in Chinese).
[5] 张静, 严静娜, 郭悦宁, 等. 阻燃剂四溴双酚A的厌氧-好氧生物降解 [J]. 环境化学, 2016, 35(9): 1776-1784. doi: 10.7524/j.issn.0254-6108.2016.09.2016013001 ZHANG J, YAN J N, GUO Y N, et al. Anaerobic and aerobic biodegradation of flame retardant tetrabromobisphenol A [J]. Environmental Chemistry, 2016, 35(9): 1776-1784(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016013001
[6] LIN K D, LIU W P, GAN J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: Kinetics, products, and pathways [J]. Environmental Science & Technology, 2009, 43(12): 4480-4486.
[7] QU R J, FENG M B, WANG X H, et al. Rapid removal of tetrabromobisphenol A by ozonation in water: Oxidation products, reaction pathways and toxicity assessment [J]. PLoS One, 2015, 10(10): e0139580. doi: 10.1371/journal.pone.0139580
[8] FENG Y P, COLOSI L M, GAO S X, et al. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions: Reaction rates, products, and pathways [J]. Environmental Science & Technology, 2013, 47(2): 1001-1008.
[9] DING Y B, ZHU L H, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate [J]. Applied Catalysis B:Environmental, 2013, 129: 153-162. doi: 10.1016/j.apcatb.2012.09.015
[10] GUO Y G, ZHOU J, LOU X Y, et al. Enhanced degradation of Tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates [J]. Chemical Engineering Journal, 2014, 254: 538-544. doi: 10.1016/j.cej.2014.05.143
[11] LIU G B, ZHAO H Y, THIEMANN T. Zn dust mediated reductive debromination of tetrabromobisphenol A (TBBPA) [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1150-1153.
[12] LIU G B, DAI L, GAO X, et al. Reductive degradation of tetrabromobisphenol A (TBBPA) in aqueous medium [J]. Green Chemistry, 2006, 8(9): 781. doi: 10.1039/b605261d
[13] WANG C, GAO J, GU C. Rapid destruction of tetrabromobisphenol A by iron(III)-tetraamidomacrocyclic ligand/layered double hydroxide composite/H2O2 system [J]. Environmental Science & Technology, 2017, 51(1): 488-496.
[14] WANG C, XIAN Z Y, DING Y H, et al. Self-assembly of FeIII-TAML-based microstructures for rapid degradation of bisphenols [J]. Chemosphere, 2020, 256: 127104. doi: 10.1016/j.chemosphere.2020.127104
[15] LI H C, SHAN C, LI W, et al. Peroxymonosulfate activation by iron(III)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex [J]. Water Research, 2018, 147: 233-241. doi: 10.1016/j.watres.2018.10.015
[16] KUNDU, ANNAVAJHALA M, KURNIKOV I V, et al. Experimental and theoretical evidence for multiple Fe(IV) reactive intermediates in TAML-activator catalysis: Rationalizing a counterintuitive reactivity order [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2012, 18(33): 10244-10249.
[17] KUNDU S M, THOMPSON J V K, SHEN L Q, et al. Activation parameters as mechanistic probes in the TAML iron(V)-oxo oxidations of hydrocarbons [J]. Chemistry - A European Journal, 2015, 21(4): 1803-1810. doi: 10.1002/chem.201405024
[18] GUPTA S S, STADLER M, NOSER C A, et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide [J]. Science, 2002, 296(5566): 326-328. doi: 10.1126/science.1069297
[19] SU H R, YU C Y, ZHOU Y F, et al. Quantitative structure-activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2 [J]. Water Research, 2018, 140: 354-363. doi: 10.1016/j.watres.2018.04.062
[20] CHAHBANE N, POPESCU D L, MITCHELL D A, et al. FeIII-TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: Products, toxicity, kinetics, and mechanisms [J]. Green Chemistry, 2007, 9(1): 49-57. doi: 10.1039/B604990G
[21] CHEN J L, RAVINDRAN S, SWIFT S, et al. Catalytic oxidative degradation of 17α-ethinylestradiol by FeIII-TAML/H2O2: Estrogenicities of the products of partial, and extensive oxidation [J]. Water Research, 2012, 46(19): 6309-6318. doi: 10.1016/j.watres.2012.09.012
[22] SHAPPELL N W, VRABEL M A, MADSEN P J, et al. Destruction of estrogens using Fe-TAML/peroxide catalysis [J]. Environmental Science & Technology, 2008, 42(4): 1296-1300.
[23] SHEN L Q, BEACH E S, XIANG Y, et al. Rapid, biomimetic degradation in water of the persistent drug sertraline by TAML catalysts and hydrogen peroxide [J]. Environmental Science & Technology, 2011, 45(18): 7882-7887.
[24] CHANDA A, KHETAN S K, BANERJEE D, et al. Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators [J]. Journal of the American Chemical Society, 2006, 128(37): 12058-12059. doi: 10.1021/ja064017e
[25] GHOSH A, RYABOV A D, MAYER S M, et al. Understanding the mechanism of H+-induced demetalation as a design strategy for robust iron(III) peroxide-activating catalysts [J]. Journal of the American Chemical Society, 2003, 125(41): 12378-12379. doi: 10.1021/ja0367344
[26] GHOSH A, MITCHELL D A, CHANDA A, et al. Catalase−Peroxidase activity of iron(Ⅲ)−TAML activators of hydrogen peroxide [J]. Journal of the American Chemical Society, 2008, 130(45): 15116-15126. doi: 10.1021/ja8043689
[27] ONUNDI Y, DRAKE B A, MALECKY R T, et al. A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water [J]. Green Chemistry, 2017, 19(18): 4234-4262. doi: 10.1039/C7GC01415E
[28] DENARDO M A, MILLS M R, RYABOV A D, et al. Unifying evaluation of the technical performances of iron-Tetra-amido macrocyclic ligand oxidation catalysts [J]. Journal of the American Chemical Society, 2016, 138(9): 2933-2936. doi: 10.1021/jacs.5b13087