[1] |
WANG R, WAN T F, LI W Q, et al. Schiff base network-1 incorporated monolithic column for in-tube solid phase microextraction of antiepileptic drugs in human plasma [J]. Talanta, 2021, 226: 122098. doi: 10.1016/j.talanta.2021.122098
|
[2] |
ZHENG H J, LI X Q, JIA Q. Design of pH-responsive polymer monolith based on cyclodextrin vesicle for capture and release of myoglobin [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5909-5917.
|
[3] |
LIU X L, HE M, CHEN B B, et al. Monolithic capillary microextraction combined with ICP-MS for the determination of TiO2 NPs in environmental water samples [J]. Talanta, 2019, 197: 334-340. doi: 10.1016/j.talanta.2019.01.035
|
[4] |
ZHANG H W, LI K, LIANG Z X, et al. Development of a monolithic polymer pipette for solid-phase extraction of liquiritigenin in rat plasma [J]. Chinese Chemical Letters, 2012, 23(6): 723-726. doi: 10.1016/j.cclet.2012.04.017
|
[5] |
CHEN J L, LU T L, LIN Y C. Multi-walled carbon nanotube composites with polyacrylate prepared for open-tubular capillary electrochromatography [J]. Electrophoresis, 2010, 31(19): 3217-3226. doi: 10.1002/elps.201000226
|
[6] |
LI X X, ZHANG L S, WANG C, et al. Green synthesis of monolithic column incorporated with graphene oxide using room temperature ionic liquid and eutectic solvents for capillary electrochromatography [J]. Talanta, 2018, 178: 763-771. doi: 10.1016/j.talanta.2017.10.014
|
[7] |
CHEN L, DANG X P, AI Y H, et al. Preparation of an acryloyl β-cyclodextrin-silica hybrid monolithic column and its application in pipette tip solid-phase extraction and HPLC analysis of methyl parathion and fenthion [J]. Journal of Separation Science, 2018, 41(18): 3508-3514. doi: 10.1002/jssc.201701273
|
[8] |
温雪, 郑海娇, 张扬, 等. 基于整体柱的糖基化蛋白质分离富集方法的研究进展 [J]. 分析化学, 2020, 48(1): 13-21. doi: 10.1016/S1872-2040(19)61207-7
WEN X, ZHENG H J, ZHANG Y, et al. Progress in monolithic column-based separation and enrichment of glycoproteins [J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 13-21(in Chinese). doi: 10.1016/S1872-2040(19)61207-7
|
[9] |
李子凌, 李娜, 赵腾雯, 等. 纳米材料掺杂聚合物整体柱的构筑及在前处理领域的应用 [J]. 色谱, 2021, 39(3): 229-240.
LI Z L, LI N, ZHAO T W, et al. Fabrication of nanomaterials incorporated polymeric monoliths and application in sample pretreatment [J]. Chinese Journal of Chromatography, 2021, 39(3): 229-240(in Chinese).
|
[10] |
LI W J, ZHOU X, TONG S S, et al. Poly(N-isopropylacrylamide-co-N, N'-methylene bisacrylamide) monolithic column embedded with γ-alumina nanoparticles microextraction coupled with high-performance liquid chromatography for the determination of synthetic food dyes in soft drink samples [J]. Talanta, 2013, 105: 386-392. doi: 10.1016/j.talanta.2012.10.065
|
[11] |
RAINER M, SONDEREGGER H, BAKRY R, et al. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders [J]. Proteomics, 2008, 8(21): 4593-4602. doi: 10.1002/pmic.200800448
|
[12] |
TOBAL K, GUERRE O, ROLANDO C, et al. Metal nanoparticle-based polymer a monolithic columns dedicated to the specific trapping of phosphopeptides [J]. Molecular & Cellular Proteomics, 2006, 5(10): S278-S278.
|
[13] |
TAKHISTOV P. Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate [J]. Biosensors and Bioelectronics, 2004, 19(11): 1445-1456. doi: 10.1016/j.bios.2003.08.015
|
[14] |
HE F J, LIU S Q. Detection of P. aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor [J]. Talanta, 2004, 62(2): 271-277. doi: 10.1016/j.talanta.2003.07.007
|
[15] |
GUO W L, LI E Z, WANG H D. Study on MnO2 nanomaterials catalyze electrogenerated chemiluminescence of Ru(bpy)32+ [J]. Advanced Materials Research, 2013, 662: 68-71. doi: 10.4028/www.scientific.net/AMR.662.68
|
[16] |
LIU X, CHENG H M, CUI P. Catalysis by silver nanoparticles/porous silicon for the reduction of nitroaromatics in the presence of sodium borohydride [J]. Applied Surface Science, 2014, 292: 695-701. doi: 10.1016/j.apsusc.2013.12.036
|
[17] |
ZHAO H Y, WANG Y Z, CHENG H Y, et al. Fabrication of single-walled carbon nanohorns incorporated a monolithic column for capillary electrochromatography [J]. Journal of Separation Science, 2017, 40(16): 3343-3350. doi: 10.1002/jssc.201700193
|
[18] |
CHAMBERS S D, HOLCOMBE T W, SVEC F, et al. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules [J]. Analytical Chemistry, 2011, 83(24): 9478-9484. doi: 10.1021/ac202183g
|
[19] |
WEI A L, DONG P P, CUI B J, et al. A composite monolithic column fabricated with functionalized nanodiamond and its application in separation of small molecules [J]. Journal of Porous Materials, 2017, 24(2): 373-380. doi: 10.1007/s10934-016-0270-4
|
[20] |
MA C, MA S J, CHEN Y, et al. Fast fabrication and modification of polyoctahedral silsesquioxane-containing monolithic columns via two-step photo-initiated reactions and their application in proteome analysis of tryptic digests [J]. Talanta, 2020, 209: 120526. doi: 10.1016/j.talanta.2019.120526
|
[21] |
CHEN R, ZHAO F, LI X, et al. D-2-allylglycine embedded imidazolium-bridged polyhedral oligomeric silsesquioxane hybrid monolithic column for efficient separation of both small molecules and macromolecules [J]. Journal of Chromatography A, 2020, 1609: 460491. doi: 10.1016/j.chroma.2019.460491
|
[22] |
SHEN Y F, YUAN F F, LIU X Y, et al. Synergistic effect of organic-inorganic hybrid monomer and polyhedral oligomeric silsesquioxanes in a boronate affinity monolithic capillary/chip for enrichment of glycoproteins [J]. Microchimica Acta, 2019, 186(12): 1-9.
|
[23] |
ZHANG B Y, LEI X Y, DENG L J, et al. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds [J]. Microchimica Acta, 2018, 185(7): 1-9.
|
[24] |
KHALIL A M, GEORGIADOU V, GUERROUACHE M, et al. Gold-decorated polymeric monoliths: In-situ vs ex-situ immobilization strategies and flow through catalytic applications towards nitrophenols reduction [J]. Polymer, 2015, 77: 218-226. doi: 10.1016/j.polymer.2015.09.040
|
[25] |
CATALÁ-ICARDO M, GÓMEZ-BENITO C, SIMÓ-ALFONSO E F, et al. Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent [J]. Analytical and Bioanalytical Chemistry, 2017, 409(1): 243-250. doi: 10.1007/s00216-016-9993-y
|
[26] |
PANG J L, SONG X C, HUANG X J, et al. Porous monolith-based magnetism-reinforced in-tube solid phase microextraction of sulfonylurea herbicides in water and soil samples [J]. Journal of Chromatography. A, 2020, 1613: 460672. doi: 10.1016/j.chroma.2019.460672
|
[27] |
LIRIO S, LIU W L, LIN C L, et al. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples [J]. Journal of Chromatography A, 2016, 1428: 236-245. doi: 10.1016/j.chroma.2015.05.043
|
[28] |
MAO Z K, BAO T, LI Z T, et al. Ionic liquid-copolymerized monolith incorporated with zeolitic imidazolate framework-8 as stationary phases for enhancing reversed phase selectivity in capillary electrochromatography [J]. Journal of Chromatography A, 2018, 1578: 99-105. doi: 10.1016/j.chroma.2018.10.008
|
[29] |
DING M, YANG L M, ZENG J H, et al. Orderly MOF-assembled hybrid monolithic stationary phases for nano-flow HPLC [J]. Analytical Chemistry, 2020, 92(24): 15757-15765. doi: 10.1021/acs.analchem.0c02706
|
[30] |
PANG X Y, LIU H Y, YU H, et al. Monolithic column prepared with UiO-66-2COOH MOF as monomer for enrichment and purification of ursolic acid in plants by online solid-phase extraction [J]. Chromatographia, 2020, 83(9): 1121-1131. doi: 10.1007/s10337-020-03931-x
|
[31] |
YUSUF K, BADJAH-HADJ-AHMED A Y, AQEL A, et al. Monolithic metal-organic framework MIL-53(Al)-polymethacrylate composite column for the reversed-phase capillary liquid chromatography separation of small aromatics [J]. Journal of Separation Science, 2016, 39(5): 880-888. doi: 10.1002/jssc.201501289
|
[32] |
ZHANG L S, DU P Y, GU W, et al. Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography [J]. Journal of Chromatography A, 2016, 1461: 171-178. doi: 10.1016/j.chroma.2016.07.015
|
[33] |
LEE G Y, LEE J, VO H T, et al. Amine-functionalized covalent organic framework for efficient SO2 capture with high reversibility [J]. Scientific Reports, 2017, 7: 557. doi: 10.1038/s41598-017-00738-z
|
[34] |
DUAN K, WANG J, ZHANG Y T, et al. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation [J]. Journal of Membrane Science, 2019, 572: 588-595. doi: 10.1016/j.memsci.2018.11.054
|
[35] |
SHAN M X, SEOANE B, ROZHKO E, et al. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4Separation [J]. Chemistry - A European Journal, 2016, 22(41): 14467-14470. doi: 10.1002/chem.201602999
|
[36] |
FAN H W, MUNDSTOCK A, GU J H, et al. An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation [J]. Journal of Materials Chemistry A, 2018, 6(35): 16849-16853. doi: 10.1039/C8TA05641B
|
[37] |
GAO Q, LI X, NING G H, et al. Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing [J]. Chemical Communications (Cambridge, England), 2018, 54(19): 2349-2352. doi: 10.1039/C7CC09866A
|
[38] |
ZHANG Y, HU H, JU J, et al. Ionization of a covalent organic framework for catalyzing the cycloaddition reaction between epoxides and carbon dioxide [J]. Chinese Journal of Catalysis, 2020, 41(3): 485-493. doi: 10.1016/S1872-2067(19)63487-X
|
[39] |
BAI L Y, PHUA S Z F, LIM W Q, et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery [J]. Chemical Communications (Cambridge, England), 2016, 52(22): 4128-4131. doi: 10.1039/C6CC00853D
|
[40] |
LI Y, YANG C X, YAN X P. Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution [J]. Chemical Communications (Cambridge, England), 2017, 53(16): 2511-2514. doi: 10.1039/C6CC10188G
|
[41] |
SUN Q, AGUILA B, PERMAN J, et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal [J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793. doi: 10.1021/jacs.6b12885
|
[42] |
LI N, WU D, HU N, et al. Effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres [J]. Journal of Agricultural and Food Chemistry, 2018, 66(13): 3572-3580. doi: 10.1021/acs.jafc.8b00869
|
[43] |
LIU L H, YANG C X, YAN X P. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography [J]. Journal of Chromatography A, 2017, 1479: 137-144. doi: 10.1016/j.chroma.2016.12.004
|
[44] |
LIU X, YANG C, QIAN H L, et al. Three-dimensional nanoporous covalent organic framework-incorporated monolithic columns for high-performance liquid chromatography [J]. ACS Applied Nano Materials, 2021, 4(5): 5437-5443. doi: 10.1021/acsanm.1c00770
|
[45] |
ZHANG P, WANG J N, YANG H G, et al. Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol–ene click reaction for capillary liquid chromatography [J]. RSC Advances, 2016, 6(30): 24835-24842. doi: 10.1039/C6RA01370H
|
[46] |
ZHENG H J, LI Z, ZHANG J C, et al. Preparation of cucurbit[6]uril-modified polymer monolithic column for microextraction of nitroaromatics [J]. RSC Advances, 2015, 5(8): 5850-5857. doi: 10.1039/C4RA11944D
|
[47] |
WILL C, HUELSMANN R D, MAFRA G, et al. High-throughput approach for the in situ generation of magnetic ionic liquids in parallel-dispersive droplet extraction of organic micropollutants in aqueous environmental samples [J]. Talanta, 2021, 223: 121759. doi: 10.1016/j.talanta.2020.121759
|
[48] |
TASHAKKORI P, TAĞAÇ A A, MERDIVAN M. Fabrication of montmorillonite/ionic liquid composite coated solid-phase microextraction fibers for determination of phenolic compounds in fruit juices by gas chromatography and liquid chromatography [J]. Journal of Chromatography A, 2021, 1635: 461741. doi: 10.1016/j.chroma.2020.461741
|
[49] |
KONIECZNA K, YAVIR K, KERMANI M, et al. The new silica-based coated SPME fiber as universal support for the confinement of ionic liquid as an extraction medium [J]. Separation and Purification Technology, 2020, 252: 117411. doi: 10.1016/j.seppur.2020.117411
|
[50] |
ORAZBAYEVA D, KOZIEL J A, TRUJILLO-RODRÍGUEZ M J, et al. Polymeric ionic liquid sorbent coatings in headspace solid-phase microextraction: A green sample preparation technique for the determination of pesticides in soil [J]. Microchemical Journal, 2020, 157: 104996. doi: 10.1016/j.microc.2020.104996
|
[51] |
MAO Z K, CHEN Z L. Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography [J]. Journal of Chromatography A, 2017, 1480: 99-105. doi: 10.1016/j.chroma.2016.12.030
|
[52] |
WANG J F, JIANG X Y, ZHANG H, et al. Preparation of a porous polymer monolithic column with an ionic liquid as a porogen and its applications for the separation of small molecules in high performance liquid chromatography [J]. Analytical Methods, 2015, 7(18): 7879-7888. doi: 10.1039/C5AY01487E
|
[53] |
LI P, ZHANG X Q, CHEN Y J, et al. A sequential solid phase microextraction system coupled with inductively coupled plasma mass spectrometry for speciation of inorganic arsenic [J]. Anal Methods, 2014, 6(12): 4205-4211. doi: 10.1039/C4AY00438H
|
[54] |
ZHENG F, HU B. Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2008, 63(1): 9-18. doi: 10.1016/j.sab.2007.10.034
|
[55] |
LIU D, MA J T, JIN Y, et al. Preparation of a monolith functionalized with zinc oxide nanoparticles and its application in the enrichment of fluoroquinolone antibiotics [J]. Journal of Separation Science, 2015, 38(1): 134-140. doi: 10.1002/jssc.201400893
|
[56] |
CARRASCO-CORREA E J, RAMIS-RAMOS G, HERRERO-MARTÍNEZ J M. Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography [J]. Journal of Chromatography A, 2015, 1385: 77-84. doi: 10.1016/j.chroma.2015.01.044
|
[57] |
LI W B, WU F L, DAI Y W, et al. Poly (octadecyl methacrylate-co-trimethylolpropane trimethacrylate) monolithic column for hydrophobic in-tube solid-phase microextraction of chlorophenoxy acid herbicides [J]. Molecules, 2019, 24(9): 1678. doi: 10.3390/molecules24091678
|
[58] |
LIANG G H, GUO X J, TAN X C, et al. Molecularly imprinted monolithic column based on functionalized β-cyclodextrin and multi-walled carbon nanotubes for selective recognition of benzimidazole residues in Citrus samples [J]. Microchemical Journal, 2019, 146: 1285-1294. doi: 10.1016/j.microc.2019.02.064
|
[59] |
WU J Y, MEI M, HUANG X J. Fabrication of boron-rich multiple monolithic fibers for the solid-phase microextraction of carbamate pesticide residues in complex samples [J]. Journal of Separation Science, 2019, 42(4): 878-887. doi: 10.1002/jssc.201800996
|
[60] |
SUN B, WANG C P, WANG Q, et al. Preparation of acryloyl β-cyclodextrin organic polymer monolithic column and its application in solid-phase microextraction and HPLC analysis for carbofuran and carbaryl in rice [J]. Food Analytical Methods, 2017, 10(12): 3847-3855. doi: 10.1007/s12161-017-0931-1
|
[61] |
JIN T T, LI F, CHENG J, et al. Polymer monolithic column containing embedded graphene oxide sheets for sensitive determination of carbamate insecticides by HPLC [J]. Microchimica Acta, 2016, 183(2): 543-551. doi: 10.1007/s00604-015-1637-y
|
[62] |
FRESCO-CALA B, CÁRDENAS S, VALCÁRCEL M. Improved microextraction of selected triazines using polymer monoliths modified with carboxylated multi-walled carbon nanotubes [J]. Microchimica Acta, 2016, 183(1): 465-474. doi: 10.1007/s00604-015-1673-7
|
[63] |
马涛, 孔继婕, 韩孟书, 等. 环境中硝基多环芳烃的污染现状及其毒性效应研究进展 [J]. 环境化学, 2020, 39(9): 2430-2440. doi: 10.7524/j.issn.0254-6108.2019062907
MA T, KONG J J, HAN M S, et al. Review on the pollution status and toxicity effects of nitrated polycyclic aromatic hydrocarbons in the environment [J]. Environmental Chemistry, 2020, 39(9): 2430-2440(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062907
|
[64] |
马雪柔, 魏建建, 马德华, 等. 臭氧化芳香族化合物中生物毒性的演变规律研究 [J]. 环境科学学报, 2021, 41(3): 1111-1122.
MA X R, WEI J J, MA D H, et al. Evolution of biotoxicity during the ozonation of aromatics [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1111-1122(in Chinese).
|
[65] |
YAÑEZ-MACIAS R, HERNANDEZ-HERNANDEZ E, GALLARDO-VEGA C A, et al. Covalent grafting of unfunctionalized pristine MWCNT with Nylon-6 by microwave assist in situ polymerization [J]. Polymer, 2019, 185: 121946. doi: 10.1016/j.polymer.2019.121946
|
[66] |
WU Y D, DHAMODHARAN D, WANG Z A, et al. Effect of electrophoretic deposition followed by solution pre-impregnated surface modified carbon fiber-carbon nanotubes on the mechanical properties of carbon fiber reinforced polycarbonate composites [J]. Composites Part B:Engineering, 2020, 195: 108093. doi: 10.1016/j.compositesb.2020.108093
|
[67] |
CHOKKAREDDY R, REDHI G G. A facile electrochemical sensor based on ionic liquid functionalized multiwalled carbon nanotubes for isoniazid detection [J]. Journal of Analytical Chemistry, 2020, 75(12): 1638-1646. doi: 10.1134/S1061934820120059
|
[68] |
ZHANG L S, ZHAO Q L, LI X X, et al. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents [J]. Talanta, 2016, 161: 660-667. doi: 10.1016/j.talanta.2016.09.030
|
[69] |
CHAMBERS S D, SVEC F, FRÉCHET J M J. Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules [J]. Journal of Chromatography A, 2011, 1218(18): 2546-2552. doi: 10.1016/j.chroma.2011.02.055
|
[70] |
GANEWATTA N, EL RASSI Z. Monolithic capillary columns consisting of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography [J]. The Analyst, 2018, 143(1): 270-279. doi: 10.1039/C7AN01426K
|
[71] |
LEUBNER S, BENGTSSON V E G, SYNNATSCHKE K, et al. Synthesis and exfoliation of a new layered mesoporous Zr-MOF comprising hexa- and dodecanuclear clusters as well as a small organic linker molecule [J]. Journal of the American Chemical Society, 2020, 142(37): 15995-16000. doi: 10.1021/jacs.0c06978
|
[72] |
马学林, 韩利民, 张骁勇, 等. 多响应锆基金属有机框架荧光传感器对Fe3+, Cr2O72-离子和有机小分子的识别 [J]. 有机化学, 2020, 40(9): 2938-2948. doi: 10.6023/cjoc202005010
MA X L, HAN L M, ZHANG X Y, et al. A highly stable multi-response zirconium(Ⅳ) metal-organic frameworks for fluorescence sensing of Fe3+, Cr2O72- and organic small molecules [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2938-2948(in Chinese). doi: 10.6023/cjoc202005010
|
[73] |
MORADI E, RAHIMI R, SAFARIFARD V. Ultrasound-assisted preparation nanostructures of Cu2(BDC)2(BPY)-MOF: Highly selective and sensitive luminescent sensing of THF small molecule and Cu2+ and Pb2+ ions [J]. Journal of Solid State Chemistry, 2020, 288: 121397. doi: 10.1016/j.jssc.2020.121397
|
[74] |
FU Y Y, YANG C X, YAN X P. Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules [J]. Chemical Communications (Cambridge, England), 2013, 49(64): 7162-7164. doi: 10.1039/c3cc43017k
|
[75] |
杨成雄, 杨雪清, 严秀平. 金属-有机骨架MIL-101(Cr)掺杂聚合物整体柱的制备及其用于酚类化合物的在线固相萃取 [J]. 色谱, 2019, 37(8): 824-830. doi: 10.3724/SP.J.1123.2019.01023
YANG C X, YANG X Q, YAN X P. Preparation of metal-organic framework MIL-101(Cr) incorporated polymer monolithic column for on-line solid-phase extraction of phenols [J]. Chinese Journal of Chromatography, 2019, 37(8): 824-830(in Chinese). doi: 10.3724/SP.J.1123.2019.01023
|
[76] |
叶芳贵, 陆俊宇, 王圆, 等. 金纳米粒子修饰毛细管硅胶整体柱的制备及其电色谱性能研究 [J]. 分析化学, 2011, 39(3): 341-345. doi: 10.1016/S1872-2040(10)60430-6
YE F G, LU J Y, WANG Y, et al. Preparation and characterization of gold nanoparticle-modified silica monolith for capillary electrochromatography [J]. Chinese Journal of Analytical Chemistry, 2011, 39(3): 341-345(in Chinese). doi: 10.1016/S1872-2040(10)60430-6
|
[77] |
ZHANG P, YANG H G, CHEN T, et al. Facile one-pot preparation of a novel imidazolium-based monolith by thiol-ene click chemistry for capillary liquid chromatography [J]. Electrophoresis, 2017, 38(22/23): 3013-3019.
|
[78] |
ZHAO A X, XU Z Q, MA L Y, et al. Preparation and characterization of Fe3O4@SiO2 nanoparticles incorporated polymer monolithic column for gas chromatography [J]. Chromatographia, 2018, 81(7): 1043-1051. doi: 10.1007/s10337-018-3541-1
|
[79] |
杨振兴, 李烨莹, 叶芳芳, 等. 抗生素废水处理技术研究进展 [J]. 现代化工, 2021, 41(1): 57-61.
YANG Z X, LI Y Y, YE F F, et al. Summary of progress in antibiotics wastewater treatment technology [J]. Modern Chemical Industry, 2021, 41(1): 57-61(in Chinese).
|
[80] |
REN Z X, XU H H, WANG Y W, et al. Combined toxicity characteristics and regulation of residual quinolone antibiotics in water environment [J]. Chemosphere, 2021, 263: 128301. doi: 10.1016/j.chemosphere.2020.128301
|
[81] |
AHMED M, YAJADDA M M A, HAN Z J, et al. Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals [J]. Journal of Chromatography A, 2014, 1360: 100-109. doi: 10.1016/j.chroma.2014.07.052
|
[82] |
LYU D Y, YANG C X, YAN X P. Fabrication of aluminum terephthalate metal-organic framework incorporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples [J]. Journal of Chromatography A, 2015, 1393: 1-7. doi: 10.1016/j.chroma.2015.03.020
|
[83] |
SHIH Y H, WANG K Y, SINGCO B, et al. Metal-organic framework-polymer composite as a highly efficient sorbent for sulfonamide adsorption and desorption: Effect of coordinatively unsaturated metal site and topology [J]. Langmuir, 2016, 32(44): 11465-11473. doi: 10.1021/acs.langmuir.6b03067
|
[84] |
梁宇, 马安周, 宋茂勇, 等. 全氟辛烷磺酸生物降解研究进展 [J]. 微生物学通报, 2020, 47(8): 2536-2549.
LIANG Y, MA A Z, SONG M Y, et al. Advances in biodegradation of perfluorooctane sulfonate(PFOS) [J]. Microbiology China, 2020, 47(8): 2536-2549(in Chinese).
|
[85] |
XIONG X Y, YANG Z H, LI Y X, et al. Preparation of a polyhedral oligomeric silsesquioxane-based perfluorinated monolithic column [J]. Journal of Chromatography A, 2013, 1304: 1087-1091.
|
[86] |
吕亚宁, 宋伟, 沈贵兰, 等. 高效液相色谱-电感耦合等离子体质谱法同时测定果汁饮品中砷、硒与铬元素的无机形态 [J]. 分析测试学报, 2018, 37(9): 1087-1091. doi: 10.3969/j.issn.1004-4957.2018.09.018
LV Y N, SONG W, SHEN G L, et al. Simultaneous determination of inorganic speciations of as,Se and Cr in juice drinks by high performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. Journal of Instrumental Analysis, 2018, 37(9): 1087-1091(in Chinese). doi: 10.3969/j.issn.1004-4957.2018.09.018
|
[87] |
谷善勇, 骆骄阳, 刘好, 等. 铬元素及其形态分析研究进展 [J]. 中国中药杂志, 2018, 43(23): 4622-4631.
GU S Y, LUO J Y, LIU H, et al. Research progress of chromium and its speciation analysis [J]. China Journal of Chinese Materia Medica, 2018, 43(23): 4622-4631(in Chinese).
|
[88] |
张伟, 黄良民. 海洋生物体内砷含量及其形态研究进展 [J]. 生态毒理学报, 2019, 14(1): 41-53. doi: 10.7524/AJE.1673-5897.20190116002
ZHANG W, HUANG L M. Advances of arsenic contents and different species in marine organisms [J]. Asian Journal of Ecotoxicology, 2019, 14(1): 41-53(in Chinese). doi: 10.7524/AJE.1673-5897.20190116002
|
[89] |
张莉, 吴大付, 张安邦. ICP-AES用于金莲花的无机元素初级形态分析及其溶出特征性研究 [J]. 光谱实验室, 2011, 28(2): 739-742. doi: 10.3969/j.issn.1004-8138.2011.02.062
ZHANG L, WU D F, ZHANG A B. Study on primary elemental speciation analysis and extracting characteristics of Trollius chinensis by ICP-AES [J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(2): 739-742(in Chinese). doi: 10.3969/j.issn.1004-8138.2011.02.062
|
[90] |
ZHAO L Y, ZHU Q Y, ZHANG X Q, et al. Preparation and analytical application of novel thiol-functionalized solid extraction matrices: From mesoporous silica to hybrid monolithic capillary column [J]. Talanta, 2018, 189: 517-526. doi: 10.1016/j.talanta.2018.07.034
|
[91] |
ZHAO J C, ZHU Q Y, ZHAO L Y, et al. Preparation of an aptamer based organic-inorganic hybrid monolithic column with gold nanoparticles as an intermediary for the enrichment of proteins [J]. The Analyst, 2016, 141(16): 4961-4967. doi: 10.1039/C6AN00957C
|
[92] |
ZHENG F, HU B. Dual silica monolithic capillary microextraction (CME) on-line coupled with ICP-MS for sequential determination of inorganic arsenic and selenium species in natural waters [J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1051. doi: 10.1039/b900057g
|
[93] |
ZHAO L Y, FEI J J, LIAN H Z, et al. Simultaneous speciation analysis of chromium and antimony by novel carboxyl-functionalized hybrid monolithic column solid phase microextraction coupled with ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2019, 34(8): 1693-1700. doi: 10.1039/C9JA00157C
|
[94] |
ZHAO L Y, ZHU Q Y, MAO L, et al. Preparation of thiol- and amine-bifunctionalized hybrid monolithic column via “one-pot” and applications in speciation of inorganic arsenic [J]. Talanta, 2019, 192: 339-346. doi: 10.1016/j.talanta.2018.09.064
|
[95] |
SUN Y L, ZHAO L Y, LIAN H Z, et al. Carboxyl-functionalized hybrid monolithic column prepared by “thiol-ene” click reaction for noninvasive speciation analysis of chromium with inductively coupled plasma-mass spectrometry [J]. Analytica Chimica Acta, 2020, 1137: 85-93. doi: 10.1016/j.aca.2020.08.052
|
[96] |
ZHAO L Y, FEI J J, LIAN H Z, et al. Development of a novel amine- and carboxyl-bifunctionalized hybrid monolithic column for non-invasive speciation analysis of chromium [J]. Talanta, 2020, 212: 120799. doi: 10.1016/j.talanta.2020.120799
|
[97] |
陈绍占, 刘丽萍, 张妮娜, 等. 高效液相色谱-电感耦合等离子体质谱法测定食用菌中无机汞和甲基汞 [J]. 理化检验-化学分册, 2020, 56(10): 1122-1126.
CHEN S Z, LIU L P, ZHANG N N, et al. HPLC-ICP-MS determination of inorganic mercury and methylmercury in edible fungi [J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2020, 56(10): 1122-1126(in Chinese).
|
[98] |
MA R R, CAO F F, LIU B Z, et al. Synthesis of divinylbenzene polymer/Fe3O4 hybrid monolithic column for enrichment and online thermal desorption of methylmercury in real samples [J]. Talanta, 2015, 138: 138-143. doi: 10.1016/j.talanta.2015.02.017
|